| SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas |
Prev
Next
|
|
|
Strain modulated phonon transport in one-dimensional nonlinear lattice with on-site potential |
| Hongbin Chen(陈宏斌)1, Nianbei Li(李念北)1,†, and Jie Chen(陈杰)2,‡ |
1 Institute of Systems Science and Department of Physics, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China; 2 Center for Phononics and Thermal Energy Science, China-EU Joint Laboratory for Nanophononics, MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China |
|
|
|
|
Abstract The one-dimensional (1D) nonlinear lattices with on-site potentials exhibit normal heat conduction and energy diffusion behaviors. The strain-modulated energy diffusion constants are studied for the 1D Frenkel–Kontorova (FK) lattices, which are typical lattices with on-site potentials. The 1D FK lattices show strain-modulated symmetric behaviors of local extrema in energy diffusion constants, similar to those previously observed in 1D Fermi–Pasta–Ulam (FPU) lattices that contain only interparticle potentials. However, the 1D FK lattices exhibit local minima in energy diffusion constants, which is in contrast to the behavior of the 1D FPU lattices. Although strain always enhances the phonon group velocity and suppresses the phonon relaxation time for both the 1D FK and FPU lattices, the suppression of the phonon relaxation time is much weaker for the 1D FK lattices compared to the 1D FPU lattices.
|
Received: 22 May 2025
Revised: 20 June 2025
Accepted manuscript online: 19 July 2025
|
|
PACS:
|
44.10.+i
|
(Heat conduction)
|
| |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
| Fund: This project is supported by the National Natural Science Foundation of China (Grant Nos. 12175074 and 12475037) and the Science and Technology Commission of Shanghai Municipality (Grant No. 24520711200). J. C. is supported by the Shuguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (Grant No. 23SG18). |
Corresponding Authors:
Nianbei Li, Jie Chen
E-mail: nbli@hqu.edu.cn;jie@tongji.edu.cn
|
Cite this article:
Hongbin Chen(陈宏斌), Nianbei Li(李念北), and Jie Chen(陈杰) Strain modulated phonon transport in one-dimensional nonlinear lattice with on-site potential 2025 Chin. Phys. B 34 114401
|
[1] Li N B, Ren J,Wang L, Zhang G, Hänggi P and Li BW2012 Rev. Mod. Phys. 84 1045 [2] Mao J, Liu Z, Zhou J, Zhu H, Zhang Q, Chen G and Ren Z 2018 Adv. Phys. 67 69 [3] Zhou Y, Dong Z, Hsieh W, Goncharov A F and Chen X 2022 Nat. Rev. Phys. 4 319 [4] Guo Z X, Zhang D E and Gong X G 2009 Appl. Phys. Lett. 95 163103 [5] Li X, Maute K, Dunn M L and Yang R 2010 Phys. Rev. B 81 245318 [6] Broido D, Lindsay L and Ward A 2012 Phys. Rev. B 86 115203 [7] Mukhopadhyay S and Stewart D 2014 Phys. Rev. Lett. 113 25901 [8] Sun Z, Yuan K, Zhang X and Tang D 2018 Phys. Chem. Chem. Phys. 20 30331 [9] Yuan K, Zhang X, Gao Y and Tang D 2023 Phys. Chem. Chem. Phys. 25 24883 [10] Li S, Qin Z,Wu H, Li M, Kunz M, Alatas A, Kavner A and Hu Y 2022 Nature 612 459 [11] Ouyang T and Hu M 2015 Phys. Rev. B 92 235204 [12] Tang Z, Wang X, Li J, He C, Tang C, Wang H, Chen M and Ouyang T 2023 Appl. Phys. Lett. 122 172203 [13] Ren W, Zhang Z, Chen C, Ouyang Y, Li N B and Chen J 2020 Front. Mater. 7 56909 [14] Jiang J, FuW, Chen J and Zhao H 2017 Sci. China-Phys. Mech. Astron. 60 070512 [15] Savin A V and Gendelman O V 2014 Phys. Rev. E 89 012134 [16] Jiang J and Zhao H 2016 J. Stat. Mech. 093208 [17] Chen H B and Li N B 2025 Eur. Phys. J. B 98 66 [18] Lepri S, Livi R and Politi A 1997 Phys. Rev. Lett. 78 1896 [19] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1 [20] Dhar A 2008 Adv. Phys. 57 457 [21] Liu S, Xu X F, Xie R G, Zhang G and Li B W 2013 Eur. Phys. J. B 85 337 [22] Lepri S 2016 Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer, vol. 921 ( Heidelberg: Springer) [23] Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B and Zhang G 2020 Phys. Rep. 860 1 [24] Hatano T 1999 Phys. Rev. E 59 R1 [25] Prosen T and Campbell D K 2000 Phys. Rev. Lett. 84 2857 [26] Narayan O and Ramaswamy S 2002 Phys. Rev. Lett. 89 200601 [27] Pereverzev A 2003 Phys. Rev. E 68 056124 [28] Wang J S and Li B W 2004 Phys. Rev. Lett. 92 074302 [29] Wang L and Wang T 2011 Europhys. Lett. 93 54002 [30] Wang L, Hu B and Li B W 2012 Phys. Rev. E 86 040101 [31] Li N B, Li B W and Flach S 2010 Phys. Rev. Lett. 105 054102 [32] Giardinà C, Livi R, Politi A and Vassalli M 2000 Phys. Rev. Lett. 84 2144 [33] Gendelman O and Savin A 2000 Phys. Rev. Lett. 84 2381 [34] Li Y Y, Liu S, Li N B, Hänggi P and Li B W 2015 New J. Phys. 17 043064 [35] Baldovin M and Iubini S 2021 J. Stat. Mech. 053202 [36] Chen H B and Li N B 2025 Eur. Phys. J. B 98 21 [37] Hu B, Li B W and Zhao H 1998 Phys. Rev. E 57 2992 [38] Hu B, Li B W and Zhao H 2000 Phys. Rev. E 61 3882 [39] Aoki K and Kusnezov D 2000 Phys. Lett. A 265 250 [40] Li N B and Li B W 2012 AIP Advances 2 041408 [41] Li N B and Li B W 2013 Phys. Rev. E 87 042125 [42] Yang L L, Li N B and Li B W 2014 Phys. Rev. E 90 062122 [43] Zhao H 2006 Phys. Rev. Lett. 96 140602 [44] Xu L and Wang L 2016 Phys. Rev. E 94 030101(R) [45] Xu L and Wang L 2017 Phys. Rev. E 96 052139 [46] Braun O and Kivshar K 1998 Phys. Rep. 306 1 [47] Gillan M and Holloway R 1985 J. Phys. C 18 5705 [48] Bak P 1982 Rep. Prog. Phys. 45 587 [49] Selke W, 1992 Phase Transitions and Critical Phenomena, edited by Domb C and Lebowitz J L, vol 15 (London: Academic Press) [50] Liu S, Hänggi P, Li N B, Ren J and Li B W 2014 Phys. Rev. Lett. 112 040601 [51] Tamaki S, Sasada M and Saito K 2017 Phys. Rev. Lett. 119 110602 [52] Mao D and Wang L 2020 Eur. Phys. J. B 93 39 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|