| SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience |
Prev
Next
|
|
|
Multi-scroll hopfield neural network excited by memristive self-synapses and its application in image encryption |
| Ting He(何婷)1, Fei Yu(余飞)2, Yue Lin(林越)1, Shaoqi He(何邵祁)2, Wei Yao(姚卫)2, Shuo Cai(蔡烁)2, and Jie jin(金杰)3,† |
1 School of Computer Science and Technology, ChangSha University of Science and Technology, Changsha 410114, China; 2 School of Physics and Electronic Science, ChangSha University of Science and Technology, Changsha 410114, China 3 School of Information Engineering, Changsha Medical University, Changsha 410219, China |
|
|
|
|
Abstract The functionality of the biological brain is closely related to the dynamic behavior generated by synapses in its complex neural system. The self-connection synapse, as a critical form of feedback synapse in Hopfield neurons, plays an essential role in understanding the dynamic behavior of the brain. Synaptic memristors can bring neural network models closer to the complexity of the brain’s neural networks. Inspired by this, this study incorporates the nonlinear memory characteristics of synapses into the Hopfield neural network (HNN) by replacing a single self-synapse in a four-dimensional HNN model with a novel cosine memristor model, aiming to more realistically reproduce the dynamical behavior of biological neurons in artificial systems. By performing a dynamical analysis of the system using numerical methods, we find that the model exhibits infinitely many equilibrium points and can induce the formation of rare transient attractors, as well as an arbitrary number of multi-scroll attractors. Additionally, the model demonstrates complex coexisting attractor dynamics, including transient chaos, periodicity, decaying periodicity, and coexisting chaos. Furthermore, the feasibility of the proposed HNN model is verified using a field-programmable gate array (FPGA). Finally, an electronic codebook (ECB)-mode block cipher encryption algorithm is proposed for image encryption. The encryption performance is evaluated, with an information entropy value of 7.9993, demonstrating the excellent randomness of the system-generated numbers.
|
Received: 06 August 2025
Revised: 20 August 2025
Accepted manuscript online: 26 August 2025
|
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
| |
05.45.Gg
|
(Control of chaos, applications of chaos)
|
| |
07.05.Mh
|
(Neural networks, fuzzy logic, artificial intelligence)
|
| |
87.19.lj
|
(Neuronal network dynamics)
|
|
| Fund: This project was supported by the Guiding Science and Technology Plan Project of Changsha City under Grant kzd2501129, by the Natural Science Foundation of Hunan Province (Grant No. 2025JJ50368), the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 24A0248), and the National Natural Science Foundation of China (Grant No. 62273141). |
Corresponding Authors:
Jie jin
E-mail: jj67123@hnust.edu.cn
|
Cite this article:
Ting He(何婷), Fei Yu(余飞), Yue Lin(林越), Shaoqi He(何邵祁), Wei Yao(姚卫), Shuo Cai(蔡烁), and Jie jin(金杰) Multi-scroll hopfield neural network excited by memristive self-synapses and its application in image encryption 2025 Chin. Phys. B 34 120506
|
[1] Zhang Z, He Y, Mai W, Luo Y, Li X, Cheng Y, Huang X and Lin R 2025 IEEE Trans. Neural Netw. Learn. Syst. 36 8166 [2] Deng Q, Wang C and Yang G 2025 Int. J. Bifurcat. Chaos 35 2550053 [3] Xiang Q, Gong H and Hua C 2025 J. Supercomput. 81 159 [4] Yu F, Wang X, Guo R, Ying Z, He Y and Zou Q 2025 Chin. Phys. B 34 120501 [5] Mou J, Cao H, Zhou N and Cao Y 2024 IEEE Trans. Cybern. 54 7333 [6] Zhu J, Jin J, Chen C, Wu L, Lu M and Ouyang A 2025 IEEE Trans. Emerg. Top. Comput. Intell. 9 176 [7] Yu F, He S, Yao W, Cai S and Xu Q 2025 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 44 4564 [8] Korn H and Faure P 2003 Comptes Rendus Biol. 326 787 [9] Tan X, Xiang C, Cao J, Xu W, Wen G and Rutkowski L 2021 IEEE Trans. Cybern. 52 8246 [10] Calitoiu D, Oommen B J and Nussbaum D 2007 IEEE Trans. Syst. Man Cybern. B Cybern. 37 692 [11] Deng Q, Wang C, Sun Y, Cong X, Lin H and Deng Z 2025 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 44 4701 [12] Peng B, Yan S, Cheng D, Yu D, Liu Z, Yakovlev V V, Yuan L and Chen X 2023 Chin. Phys. Lett. 40 034201 [13] Yuan F, Qi Y, Yu X and Deng Y 2024 Chaos Solitons Fractals 188 115478 [14] Wang C, Li Y and Deng Q 2025 Chaos Solitons Fractals 193 116053 [15] Bao H, Chen Z, Ma J, Xu Q and Bao B 2024 IEEE Trans. Ind. Electron. 71 16398 [16] Wan Q, Yang Q, Liu T, Chen C and Shen K 2024 Chaos Solitons Fractals 189 115584 [17] Deng Q, Wang C, Sun Y and Yang G 2025 Nonlinear Dyn. 113 17161 [18] Yu F, Gracia Y M, Guo R, Ying Z, Xu J, Yao W, Jin J and Lin H 2025 Axioms 14 638 [19] Bao H, Su Y, Hua Z, Chen M, Xu Q and Bao B 2024 IEEE Trans. Circuits Syst. I Regul. Pap. 71 4145 [20] Bao B, Tang H, Su Y, Bao H, Chen M and Xu Q 2024 IEEE Trans. Circuits Syst. I Regul. Pap. 71 5907 [21] Bao H, Wang R, Tang H, Chen M and Bao B 2025 IEEE Internet Things J. 12 20902 [22] Yao W, Fang J, Yu F, Xiong L, Tang L, Zhang J and Sun Y 2024 Chaos 34 073149 [23] Lin H, Wang C and Tan Y 2020 Nonlinear Dyn. 99 2369 [24] Wang P, Chen M, Xie Y, Pan C, Watanabe K, Taniguchi T, Cheng B, Liang S J and Miao F 2023 Chin. Phys. Lett. 40 117201 [25] Luo D, Wang C, Deng Q and Sun Y 2025 Nonlinear Dyn. 113 5811 [26] Pham V T, Jafari S, Vaidyanathan S, Volos C and Wang X 2016 Sci. China Technol. Sci. 59 358 [27] Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N V, Leonov G A and Prasad A 2016 Phys. Rep. 637 1 [28] He S, Yu F, Guo R, Zheng F, Tang T, Jie J and Wang C 2025 Fractal Fract. 9 561 [29] Lin H, Deng X, Yu F and Sun Y 2024 IEEE Internet Things J. 11 29878 [30] Lin H, Wang C, Yu F, Hong Q, Xu C and Sun Y 2023 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 42 4948 [31] Lin H, Deng X, Yu F and Sun Y 2025 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 44 304 [32] Bao B, Tang H, Bao H, Hua Z, Xu Q and Chen M 2025 IEEE Trans. Ind. Electron. 72 4105 [33] Chen C, Min F, Zhang Y and Bao H 2023 Chaos Solitons Fractals 167 113068 [34] Peng X, Li C, Zeng Y and Li C L 2024 IEEE Trans. Circuits Syst. I Regul. Pap. 71 3242 [35] Lai Q, Wan Z, Zhang H and Chen G 2023 IEEE Trans. Neural Netw. Learn. Syst. 34 7824 [36] Yu F, Su D, He S, Wu Y, Zhang S and Yin H 2025 Chin. Phys. B 34 050502 [37] Yu F, He Ting, He S, Tan B, Shi C and Lin H 2025 Int. J. Bifurcat. Chaos 35 2550146 [38] Zhang S, He D, Li Y, Lu D and Li C 2025 IEEE Trans. Autom. Sci. Eng. 22 17828 [39] Deng Q, Wang C, Sun Y and Yang G 2025 IEEE Trans. Circuits Syst. I Regul. Pap. 72 7993 [40] Deng Q, Wang C, Sun Y and Yang G 2025 IEEE Trans. Cybern. 55 3926 [41] Yu F, Wu C, Xu S, Yao W, Xu C, Cai S and Wang C 2025 Signal Image Video Process. 19 77 [42] Hong Q, Jiang H, Xiao P, Du S and Li T 2025 IEEE Trans. Comput. 74 996 [43] Xiao P, Fang J, Wei Z, Dong Y, Du S, Wen S and Hong Q 2025 IEEE Trans. Autom. Sci. Eng. 22 15163 [44] Yang F, Ma J and Wu F 2024 Chaos Solitons Fractals 187 115361 [45] Wang C, Li Y, Yang G and Deng Q 2025 Math. 13 1600 [46] Feng W, Zhang K, Zhang J, Zhao X, Chen Y, Cai B, Zhu Z, Wen H and Ye C 2025 Fractal Fract. 9 426 [47] Li F, Qin W, Xi M, Bai L and Bao B 2025 Neural Netw. 183 107049 [48] Mou J, Ma T, Banerjee S and Zhang Y 2024 IEEE Trans. Circuits Syst. I: Reg. Pap. 71 1771 [49] Xu Q, Chen X, Wu H, Iu H H C, Parastesh F and Wang N 2024 IEEE Trans. Circuits Syst. Ⅱ: Express Briefs 71 4551 [50] Sun J, Li C, Wang Z and Wang Y 2023 IEEE Trans. Ind. Informat. 20 3778 [51] Lin H, Wang C, Xu C, Zhang X and Iu H H 2022 IEEE Trans. Comput.- Aided Des. Integr. Circuits Syst. 42 942 [52] Zhang S, Wang C, Zhang H and Lin H 2024 Chaos Solitons Fractals 186 115191 [53] Yu F, Kong X, Yao W, Zhang J, Cai S, Lin H and Jin J 2024 Chaos Solitons Fractals 179 114440 [54] Zhang S, Chen C, Zhang Y, Cai J, Wang X and Zeng Z 2025 IEEE Trans. Syst. Man Cybern.: Syst. 55 735 [55] Li J, Wang C and Deng Q 2024 Nonlinear Dyn. 112 14463 [56] Yu F, Lin Y, Yao W, Cai S, Lin H and Li Y 2025 Neural Netw. 182 106904 [57] Zhao H, Ma X and Bi Q 2024 Int. J. Non-Linear Mech. 159 104592 [58] Vignesh D, Ma J and Banerjee S 2024 Neurocomputing 564 126961 [59] Bao H, Ren P, Xu K, Yang L, Zhou H, Li J, Li Y and Miao X 2024 IEEE Trans. Circuits Syst. I: Reg. Pap. 71 3708 [60] Manchein C, Santana L, da Silva R M and Beims M W 2022 Chaos 32 [61] Li F, Chen Z, Zhang Y, Bai L and Bao B 2024 AEU-Int. J. Electron. Commun. 174 155037 [62] Han X, Bi X, Sun B, Ren L and Xiong L 2022 Front. Phys. 10 911144 [63] Dong K, Xu K, Wang L, Zhang C, Jin F and Song J 2023 Nonlinear Dyn. 111 22013 [64] Sun J, Li C, Wang Y and Wang Z 2024 Cogn. Neurodyn. 18 2975 [65] Alexan W, Elkandoz M, Mashaly M, Azab E and Aboshousha A 2023 IEEE Access 11 11541 [66] Li L 2024 Expert Syst. Appl. 252 124316 [67] Wang C and Song L 2023 Inf. Sci. 642 119166 [68] Sevin A 2025 Math. 13 734 [69] Hu J, Zhi R and Wang J 2025 IEEE Trans. Ind. Informat. textbf21 6495 [70] Hu J, Rao S, Zhu M, Huang J, Wang J and Wang J 2025 IEEE Trans. Ind. Informat. 21 2799 [71] Alabadi M, Habbal A and Guizani M 2024 IEEE Internet Things J. 11 20271 [72] Zhang J, Yang J, Liu Z and Wang J 2025 Neurocomputing 616 128908 [73] Ning Y, Jin J, Li Z, Chen C and Ouyang A 2025 Tsinghua Sci. Technol. [74] Feng W, Zhang J, Chen Y, Qin Z, Zhang Y, Ahmad M and Wozniak M 2024 Expert Syst. Appl. 246 123190 [75] Jin J, Wu M, Ouyang A, Li K and Chen C 2025 IEEE Internet Things J. 12 14297 [76] Gao S, Zhang Z, Iu H H C, Ding S, Mou J, Erkan U, Toktas A, Li Q, Wang C and Cao Y 2025 IEEE Internet Things J. 12 18115 [77] Zhang W, Wang S, Han W, Yu H and Zhu Z 2020 Entropy 22 73 [78] Patro K A K and Acharya B 2020 First International Conference On Power, Control And Computing Technologies (ICPC2T) pp. 411–416 [79] Panwar A, Biban G, Chugh R, Tassaddiq A and Alharbi R 2024 Heliyon 10 e31618 [80] Fang P, Liu H, Wu C and Liu M 2022 Multimed. Tools Appl. 81 21811 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|