Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 120506    DOI: 10.1088/1674-1056/adfeff
SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience Prev   Next  

Multi-scroll hopfield neural network excited by memristive self-synapses and its application in image encryption

Ting He(何婷)1, Fei Yu(余飞)2, Yue Lin(林越)1, Shaoqi He(何邵祁)2, Wei Yao(姚卫)2, Shuo Cai(蔡烁)2, and Jie jin(金杰)3,†
1 School of Computer Science and Technology, ChangSha University of Science and Technology, Changsha 410114, China;
2 School of Physics and Electronic Science, ChangSha University of Science and Technology, Changsha 410114, China 3 School of Information Engineering, Changsha Medical University, Changsha 410219, China
Abstract  The functionality of the biological brain is closely related to the dynamic behavior generated by synapses in its complex neural system. The self-connection synapse, as a critical form of feedback synapse in Hopfield neurons, plays an essential role in understanding the dynamic behavior of the brain. Synaptic memristors can bring neural network models closer to the complexity of the brain’s neural networks. Inspired by this, this study incorporates the nonlinear memory characteristics of synapses into the Hopfield neural network (HNN) by replacing a single self-synapse in a four-dimensional HNN model with a novel cosine memristor model, aiming to more realistically reproduce the dynamical behavior of biological neurons in artificial systems. By performing a dynamical analysis of the system using numerical methods, we find that the model exhibits infinitely many equilibrium points and can induce the formation of rare transient attractors, as well as an arbitrary number of multi-scroll attractors. Additionally, the model demonstrates complex coexisting attractor dynamics, including transient chaos, periodicity, decaying periodicity, and coexisting chaos. Furthermore, the feasibility of the proposed HNN model is verified using a field-programmable gate array (FPGA). Finally, an electronic codebook (ECB)-mode block cipher encryption algorithm is proposed for image encryption. The encryption performance is evaluated, with an information entropy value of 7.9993, demonstrating the excellent randomness of the system-generated numbers.
Keywords:  self-connected synapses      Hopfield neural network      multi-scroll attractor      field programmable gate array      image encryption  
Received:  06 August 2025      Revised:  20 August 2025      Accepted manuscript online:  26 August 2025
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  87.19.lj (Neuronal network dynamics)  
Fund: This project was supported by the Guiding Science and Technology Plan Project of Changsha City under Grant kzd2501129, by the Natural Science Foundation of Hunan Province (Grant No. 2025JJ50368), the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 24A0248), and the National Natural Science Foundation of China (Grant No. 62273141).
Corresponding Authors:  Jie jin     E-mail:  jj67123@hnust.edu.cn

Cite this article: 

Ting He(何婷), Fei Yu(余飞), Yue Lin(林越), Shaoqi He(何邵祁), Wei Yao(姚卫), Shuo Cai(蔡烁), and Jie jin(金杰) Multi-scroll hopfield neural network excited by memristive self-synapses and its application in image encryption 2025 Chin. Phys. B 34 120506

[1] Zhang Z, He Y, Mai W, Luo Y, Li X, Cheng Y, Huang X and Lin R 2025 IEEE Trans. Neural Netw. Learn. Syst. 36 8166
[2] Deng Q, Wang C and Yang G 2025 Int. J. Bifurcat. Chaos 35 2550053
[3] Xiang Q, Gong H and Hua C 2025 J. Supercomput. 81 159
[4] Yu F, Wang X, Guo R, Ying Z, He Y and Zou Q 2025 Chin. Phys. B 34 120501
[5] Mou J, Cao H, Zhou N and Cao Y 2024 IEEE Trans. Cybern. 54 7333
[6] Zhu J, Jin J, Chen C, Wu L, Lu M and Ouyang A 2025 IEEE Trans. Emerg. Top. Comput. Intell. 9 176
[7] Yu F, He S, Yao W, Cai S and Xu Q 2025 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 44 4564
[8] Korn H and Faure P 2003 Comptes Rendus Biol. 326 787
[9] Tan X, Xiang C, Cao J, Xu W, Wen G and Rutkowski L 2021 IEEE Trans. Cybern. 52 8246
[10] Calitoiu D, Oommen B J and Nussbaum D 2007 IEEE Trans. Syst. Man Cybern. B Cybern. 37 692
[11] Deng Q, Wang C, Sun Y, Cong X, Lin H and Deng Z 2025 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 44 4701
[12] Peng B, Yan S, Cheng D, Yu D, Liu Z, Yakovlev V V, Yuan L and Chen X 2023 Chin. Phys. Lett. 40 034201
[13] Yuan F, Qi Y, Yu X and Deng Y 2024 Chaos Solitons Fractals 188 115478
[14] Wang C, Li Y and Deng Q 2025 Chaos Solitons Fractals 193 116053
[15] Bao H, Chen Z, Ma J, Xu Q and Bao B 2024 IEEE Trans. Ind. Electron. 71 16398
[16] Wan Q, Yang Q, Liu T, Chen C and Shen K 2024 Chaos Solitons Fractals 189 115584
[17] Deng Q, Wang C, Sun Y and Yang G 2025 Nonlinear Dyn. 113 17161
[18] Yu F, Gracia Y M, Guo R, Ying Z, Xu J, Yao W, Jin J and Lin H 2025 Axioms 14 638
[19] Bao H, Su Y, Hua Z, Chen M, Xu Q and Bao B 2024 IEEE Trans. Circuits Syst. I Regul. Pap. 71 4145
[20] Bao B, Tang H, Su Y, Bao H, Chen M and Xu Q 2024 IEEE Trans. Circuits Syst. I Regul. Pap. 71 5907
[21] Bao H, Wang R, Tang H, Chen M and Bao B 2025 IEEE Internet Things J. 12 20902
[22] Yao W, Fang J, Yu F, Xiong L, Tang L, Zhang J and Sun Y 2024 Chaos 34 073149
[23] Lin H, Wang C and Tan Y 2020 Nonlinear Dyn. 99 2369
[24] Wang P, Chen M, Xie Y, Pan C, Watanabe K, Taniguchi T, Cheng B, Liang S J and Miao F 2023 Chin. Phys. Lett. 40 117201
[25] Luo D, Wang C, Deng Q and Sun Y 2025 Nonlinear Dyn. 113 5811
[26] Pham V T, Jafari S, Vaidyanathan S, Volos C and Wang X 2016 Sci. China Technol. Sci. 59 358
[27] Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N V, Leonov G A and Prasad A 2016 Phys. Rep. 637 1
[28] He S, Yu F, Guo R, Zheng F, Tang T, Jie J and Wang C 2025 Fractal Fract. 9 561
[29] Lin H, Deng X, Yu F and Sun Y 2024 IEEE Internet Things J. 11 29878
[30] Lin H, Wang C, Yu F, Hong Q, Xu C and Sun Y 2023 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 42 4948
[31] Lin H, Deng X, Yu F and Sun Y 2025 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 44 304
[32] Bao B, Tang H, Bao H, Hua Z, Xu Q and Chen M 2025 IEEE Trans. Ind. Electron. 72 4105
[33] Chen C, Min F, Zhang Y and Bao H 2023 Chaos Solitons Fractals 167 113068
[34] Peng X, Li C, Zeng Y and Li C L 2024 IEEE Trans. Circuits Syst. I Regul. Pap. 71 3242
[35] Lai Q, Wan Z, Zhang H and Chen G 2023 IEEE Trans. Neural Netw. Learn. Syst. 34 7824
[36] Yu F, Su D, He S, Wu Y, Zhang S and Yin H 2025 Chin. Phys. B 34 050502
[37] Yu F, He Ting, He S, Tan B, Shi C and Lin H 2025 Int. J. Bifurcat. Chaos 35 2550146
[38] Zhang S, He D, Li Y, Lu D and Li C 2025 IEEE Trans. Autom. Sci. Eng. 22 17828
[39] Deng Q, Wang C, Sun Y and Yang G 2025 IEEE Trans. Circuits Syst. I Regul. Pap. 72 7993
[40] Deng Q, Wang C, Sun Y and Yang G 2025 IEEE Trans. Cybern. 55 3926
[41] Yu F, Wu C, Xu S, Yao W, Xu C, Cai S and Wang C 2025 Signal Image Video Process. 19 77
[42] Hong Q, Jiang H, Xiao P, Du S and Li T 2025 IEEE Trans. Comput. 74 996
[43] Xiao P, Fang J, Wei Z, Dong Y, Du S, Wen S and Hong Q 2025 IEEE Trans. Autom. Sci. Eng. 22 15163
[44] Yang F, Ma J and Wu F 2024 Chaos Solitons Fractals 187 115361
[45] Wang C, Li Y, Yang G and Deng Q 2025 Math. 13 1600
[46] Feng W, Zhang K, Zhang J, Zhao X, Chen Y, Cai B, Zhu Z, Wen H and Ye C 2025 Fractal Fract. 9 426
[47] Li F, Qin W, Xi M, Bai L and Bao B 2025 Neural Netw. 183 107049
[48] Mou J, Ma T, Banerjee S and Zhang Y 2024 IEEE Trans. Circuits Syst. I: Reg. Pap. 71 1771
[49] Xu Q, Chen X, Wu H, Iu H H C, Parastesh F and Wang N 2024 IEEE Trans. Circuits Syst. Ⅱ: Express Briefs 71 4551
[50] Sun J, Li C, Wang Z and Wang Y 2023 IEEE Trans. Ind. Informat. 20 3778
[51] Lin H, Wang C, Xu C, Zhang X and Iu H H 2022 IEEE Trans. Comput.- Aided Des. Integr. Circuits Syst. 42 942
[52] Zhang S, Wang C, Zhang H and Lin H 2024 Chaos Solitons Fractals 186 115191
[53] Yu F, Kong X, Yao W, Zhang J, Cai S, Lin H and Jin J 2024 Chaos Solitons Fractals 179 114440
[54] Zhang S, Chen C, Zhang Y, Cai J, Wang X and Zeng Z 2025 IEEE Trans. Syst. Man Cybern.: Syst. 55 735
[55] Li J, Wang C and Deng Q 2024 Nonlinear Dyn. 112 14463
[56] Yu F, Lin Y, Yao W, Cai S, Lin H and Li Y 2025 Neural Netw. 182 106904
[57] Zhao H, Ma X and Bi Q 2024 Int. J. Non-Linear Mech. 159 104592
[58] Vignesh D, Ma J and Banerjee S 2024 Neurocomputing 564 126961
[59] Bao H, Ren P, Xu K, Yang L, Zhou H, Li J, Li Y and Miao X 2024 IEEE Trans. Circuits Syst. I: Reg. Pap. 71 3708
[60] Manchein C, Santana L, da Silva R M and Beims M W 2022 Chaos 32
[61] Li F, Chen Z, Zhang Y, Bai L and Bao B 2024 AEU-Int. J. Electron. Commun. 174 155037
[62] Han X, Bi X, Sun B, Ren L and Xiong L 2022 Front. Phys. 10 911144
[63] Dong K, Xu K, Wang L, Zhang C, Jin F and Song J 2023 Nonlinear Dyn. 111 22013
[64] Sun J, Li C, Wang Y and Wang Z 2024 Cogn. Neurodyn. 18 2975
[65] Alexan W, Elkandoz M, Mashaly M, Azab E and Aboshousha A 2023 IEEE Access 11 11541
[66] Li L 2024 Expert Syst. Appl. 252 124316
[67] Wang C and Song L 2023 Inf. Sci. 642 119166
[68] Sevin A 2025 Math. 13 734
[69] Hu J, Zhi R and Wang J 2025 IEEE Trans. Ind. Informat. textbf21 6495
[70] Hu J, Rao S, Zhu M, Huang J, Wang J and Wang J 2025 IEEE Trans. Ind. Informat. 21 2799
[71] Alabadi M, Habbal A and Guizani M 2024 IEEE Internet Things J. 11 20271
[72] Zhang J, Yang J, Liu Z and Wang J 2025 Neurocomputing 616 128908
[73] Ning Y, Jin J, Li Z, Chen C and Ouyang A 2025 Tsinghua Sci. Technol.
[74] Feng W, Zhang J, Chen Y, Qin Z, Zhang Y, Ahmad M and Wozniak M 2024 Expert Syst. Appl. 246 123190
[75] Jin J, Wu M, Ouyang A, Li K and Chen C 2025 IEEE Internet Things J. 12 14297
[76] Gao S, Zhang Z, Iu H H C, Ding S, Mou J, Erkan U, Toktas A, Li Q, Wang C and Cao Y 2025 IEEE Internet Things J. 12 18115
[77] Zhang W, Wang S, Han W, Yu H and Zhu Z 2020 Entropy 22 73
[78] Patro K A K and Acharya B 2020 First International Conference On Power, Control And Computing Technologies (ICPC2T) pp. 411–416
[79] Panwar A, Biban G, Chugh R, Tassaddiq A and Alharbi R 2024 Heliyon 10 e31618
[80] Fang P, Liu H, Wu C and Liu M 2022 Multimed. Tools Appl. 81 21811
[1] Synchronization of neuromorphic memristive Josephson junction network and its application
Dejun Yan(严德军), Fuqiang Wu(吴富强), and Wenshuai Wang(汪文帅). Chin. Phys. B, 2026, 35(1): 010505.
[2] An enhanced fingerprint template protection scheme based on four-dimensional superchaotic system and dynamic DNA coding
Baiqiang Hu(胡百强), Jiahui Liu(刘嘉辉), and Zhe Liu(刘喆). Chin. Phys. B, 2025, 34(7): 070505.
[3] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[4] Hybrid image encryption scheme based on hyperchaotic map with spherical attractors
Zhitang Han(韩智堂), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2025, 34(3): 030503.
[5] Memristor-coupled dynamics and synchronization in two bi-neuron Hopfield neural networks
Fangyuan Li(李芳苑), Haigang Tang(唐海刚), Yunzhen Zhang(张云贞), Bocheng Bao(包伯成), Hany Hassanin, and Lianfa Bai(柏连发). Chin. Phys. B, 2025, 34(12): 128701.
[6] Quantum color image encryption: Dual scrambling scheme based on DNA codec and quantum Arnold transform
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Kehan Wang(王柯涵), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2025, 34(1): 010305.
[7] A color image encryption scheme based on a 2D coupled chaotic system and diagonal scrambling algorithm
Jingming Su(苏静明), Shihui Fang(方士辉), Yan Hong(洪炎), and Yan Wen(温言). Chin. Phys. B, 2024, 33(7): 070502.
[8] Novel self-embedding holographic watermarking image encryption protection scheme
Linian Wang(王励年), Nanrun Zhou(周楠润), Bo Sun(孙博), Yinghong Cao(曹颖鸿), and Jun Mou(牟俊). Chin. Phys. B, 2024, 33(5): 050501.
[9] Coexistence behavior of asymmetric attractors in hyperbolic-type memristive Hopfield neural network and its application in image encryption
Xiaoxia Li(李晓霞), Qianqian He(何倩倩), Tianyi Yu(余天意),Zhuang Cai(才壮), and Guizhi Xu(徐桂芝). Chin. Phys. B, 2024, 33(3): 030505.
[10] A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map
Baichi Chen(陈柏池), Linqing Huang(黄林青), Shuting Cai(蔡述庭), Xiaoming Xiong(熊晓明), and Hui Zhang(张慧). Chin. Phys. B, 2024, 33(3): 030501.
[11] Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation
Zhen-Yu Liang(梁振宇), Chao-Jin Wang(王朝瑾), Yang-Yang Wang(王阳阳), Hao-Qi Gao(高皓琪), Dong-Tao Zhu(朱东涛), Hao-Li Xu(许颢砾), and Xing Yang(杨星). Chin. Phys. B, 2024, 33(3): 034204.
[12] A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row-column confusion and closed-loop bi-directional diffusion
Zheyi Zhang(张哲祎), Jun Mou(牟俊), Santo Banerjee, and Yinghong Cao(曹颖鸿). Chin. Phys. B, 2024, 33(2): 020503.
[13] Coexisting and multiple scroll attractors in a Hopfield neural network with a controlled memristor
Qing-Qing Ma(马青青), An-Jiang Lu(陆安江), and Zhi Huang(黄智). Chin. Phys. B, 2024, 33(12): 120502.
[14] Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
Yiming Wang(王一铭), Shufeng Huang(黄树锋), Huang Chen(陈煌), Jian Yang(杨健), and Shuting Cai(蔡述庭). Chin. Phys. B, 2024, 33(1): 010502.
[15] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
No Suggested Reading articles found!