Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010506    DOI: 10.1088/1674-1056/ae1fe9
GENERAL Prev   Next  

Multiscale structural complexity analysis of the Chinese classics A Dream of Red Mansions and All Men Are Brothers

Jing Feng(冯靖)1, Ping Wang(王萍)2, and Changgui Gu(顾长贵)3,†
1 Higher Vocational and Technical College, Shanghai University of Engineering Science, Shanghai 200437, China;
2 School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
3 Business School, University of Shanghai for Science and Technology, Shanghai 200092, China
Abstract  Text, as a fundamental carrier of human language and culture, exhibits high structural and semantic complexity. Its systematic analysis is essential for understanding linguistic patterns and cultural transmission. A Dream of Red Mansions and All Men Are Brothers, two masterpieces of Chinese classical literature, have long been central to debates regarding the authorship of their later chapters. Previous studies, often based on word-frequency statistics, function word distributions, entropy measures, and complex network analyses, have provided valuable insights into stylistic differences; however, they remain limited in capturing cross-scale structural features. To address this gap, we apply a multi-scale structural complexity approach based on character-frequency time series to analyze the structural evolution of both novels under various segmentation strategies. Our results reveal significant differences in peak complexity positions, overall complexity levels, and intra-textual variations between the two works, which are closely linked to changes in authorship and stylistic patterns. This study not only provides new quantitative evidence for resolving authorship disputes in classical literature but also demonstrates, from the perspective of structural complexity, the profound depth and unique charm of Chinese literary expression, highlighting the richness of Chinese language and culture. Moreover, it emphasizes the potential of structural complexity analysis as a versatile tool for textual analysis and style attribution.
Keywords:  a dream of red mansions      all men are brothers      word-frequency      multi-scale structural complexity  
Received:  11 October 2025      Revised:  04 November 2025      Accepted manuscript online:  17 November 2025
PACS:  05.45.Tp (Time series analysis)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275179, 11875042, and 12150410309) and the Natural Science Foundation of Shanghai (Grant No. 21ZR1443900).
Corresponding Authors:  Changgui Gu     E-mail:  gu_changgui@163.com

Cite this article: 

Jing Feng(冯靖), Ping Wang(王萍), and Changgui Gu(顾长贵) Multiscale structural complexity analysis of the Chinese classics A Dream of Red Mansions and All Men Are Brothers 2026 Chin. Phys. B 35 010506

[1] Kwapień J and Dro·zd·z S 2012 Phys. Rep. 515 115
[2] Grabska-Gradzińska I, Kulig A, Kwapień J, Oswiecimka P and Dro·zd·z S 2012 arXiv:1212.3171
[3] Zipf G K 1949 Human Behavior and The Principle of Least Effort (Cambridge Mass: Addison-Wesley) p. 573
[4] Mehri A and Jamaati M 2017 Phys. Lett. A 381 2470
[5] Nabeshima T and Gunji Y P 2004 Biosystems 73 131
[6] Lü L Y, Zhang Z K and Zhou T 2013 Sci. Rep. 3 1082
[7] Deng W B and Pato M P 2017 Physica A 481 167
[8] Altmann E G, Cristadoro G and Esposti M D 2012 Proc. Natl. Acad. Sci. USA 109 11582
[9] Montemurro M A and Pury P A 2002 Fractals 10 451
[10] Bhan J, Kim S, Kim J, Kwon Y, Yang S and Lee K 2006 Chaos Solitons Fractals 29 69
[11] Cong J and Liu H T 2014 Phys. Life Rev. 11 598
[12] Cancho R F I and Sole R V 2001 Proc. R. Soc. Lond. B 268 2261
[13] Kulig A, Dro·zd·z S, Kwapień J and Oswiecimka P 2015 Phys. Rev. E 91 032810
[14] Abramov O and Mehler A 2011 J. Quant. Linguist. 18 291
[15] Zhou R C 2009 Between Noble and Humble: Cao Xueqin and the Dream of the Red Chamber edited by R G Ronald and S F Mark (New York: Peter Lang)
[16] Yang Y, Gu C G, Xiao Q and Yang H J 2017 PLoS One 12 e0171776
[17] Lü N Y 2008 J. Peking Univ. (Philos. Soc. Sci.) 2 68
[18] Zheng W W and Jin M Z 2023 WIREs Comput. Stat. 15 e1584
[19] Jafariakinabad F, Tarnpradab S and Hua K A 2020 Syntactic Neural Model for Authorship Attribution In Proceedings of the Thirty Third International Flairs Conference, North Miami Beach, FL, USA pp. 234– 239
[20] Lagutina K, Lagutina N, Boychuk E, Larionov V and Paramonov I 2021 Authorship Verification of Literary Texts with Rhythm Features In Proceedings of the 2021 28th Conference of Open Innovations Association (FRUCT), Moscow, Russia
[21] Arefin A S, Vimieiro R, Riveros C, Craig H and Moscato P 2014 PLoS ONE 9 e111445
[22] Estevez-Rams E, Mesa-Rodriguez A and Estevez-Moya D 2019 PLoS ONE 14 e0214863
[23] Kulig A, Kwapień J, Stanisz T and Dro·zd·z S 2017 Inf. Sci. 375 98
[24] Kumar R and Singh P 2021 Physica A 573 125994
[25] Sigman M and Cecchi G A 2002 Proc. Natl. Acad. Sci. USA 99 1742
[26] Masucci A and Rodgers G 2006 Phys. Rev. E 74 026102
[27] LiangW, Shi Y M, Tse C K andWang Y L 2012 Sci. China Inf. Sci. 55 2417
[28] Liu H T 2008 Physica A 387 3048
[29] Liu Z, Zheng Y and Sun M 2008 Complexity 5 1
[30] Tang X 2024 Heliyon 10 e25464
[31] Zhao L M, Shi J J, Zhang C K and Liu Z X 2025 Appl. Sci. 15 1677
[32] Van Houdt G, Mosquera C and Nápoles G 2020 Artif. Intell. Rev. 53 5929
[33] Bagrov A A, Iakovlev I A, Iliasov A A, KatsnelsonMI and Mazurenko V V 2020 Proc. Natl. Acad. Sci. USA 117 30241
[34] Wang P, Gu C G, Yang H J, Wang H Y and Moore J M 2023 Physica A 609 128358
[35] Wang P, Gu C G, Yang H J and Wang H Y 2022 Chaos Solitons Fractals 164 112721
[36] Wang P, Gu C G, Yang H J and Wang H Y 2022 Electron. Res. Arch. 30 3660
[37] Febres G and Jaffé K 2014 Quantifying Literature Quality Using Complexity Criteria ArXiv (Cornell University)
[38] Xi J P 2019 Qiushi 12
[39] Febres G and Jaffé K 2016 J. Quant. Linguist. 24 16
[1] Analysis of spatiotemporal dynamic patterns of gene expression during mouse embryonic development based on Moran's I and spatial transcriptomics
Qi-Chao Li(李啟超), Hai Lin(林海), Peng Wang(王鹏), Qiutong Dong(董秋彤), Kun Wang(王坤), Jian-Wei Shuai(帅建伟), and Fang-Fu Ye(叶方富). Chin. Phys. B, 2025, 34(8): 088703.
[2] A novel baseline perspective visibility graph for time series analysis
Huang-Jing Ni(倪黄晶), Zi-Jie Song(宋紫婕), Jiao-Long Qin(秦姣龙), Ye Wu(吴烨), Shi-Le Qi(戚世乐), and Ming Song(宋明). Chin. Phys. B, 2025, 34(8): 080504.
[3] Associated network family of the unified piecewise linear chaotic family and their relevance
Haoying Niu(牛浩瀛) and Jie Liu(刘杰). Chin. Phys. B, 2025, 34(4): 040503.
[4] Model-free prediction of chaotic dynamics with parameter-aware reservoir computing
Jianmin Guo(郭建敏), Yao Du(杜瑶), Haibo Luo(罗海波), Xuan Wang(王晅), Yizhen Yu(于一真), and Xingang Wang(王新刚). Chin. Phys. B, 2025, 34(4): 040505.
[5] WT-FCTGN: A wavelet-enhanced fully connected time-gated neural network for complex noisy traffic flow modeling
Zhifang Liao(廖志芳), Ke Sun(孙轲), Wenlong Liu(刘文龙), Zhiwu Yu(余志武), Chengguang Liu(刘承光), and Yucheng Song(宋禹成). Chin. Phys. B, 2024, 33(7): 078901.
[6] A novel variable-order fractional chaotic map and its dynamics
Zhouqing Tang(唐周青), Shaobo He(贺少波), Huihai Wang(王会海), Kehui Sun(孙克辉), Zhao Yao(姚昭), and Xianming Wu(吴先明). Chin. Phys. B, 2024, 33(3): 030503.
[7] Visibility graph approach to extreme event series
Jing Zhang(张晶), Xiaolu Chen(陈晓露), Haiying Wang(王海英), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2023, 32(10): 100505.
[8] Information flow between stock markets: A Koopman decomposition approach
Semba Sherehe, Huiyun Wan(万慧云), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2022, 31(1): 018902.
[9] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[10] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[11] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[12] Patterns of cross-correlation in time series: A case study of gait trails
Jia Song(宋佳), Tong-Feng Weng(翁同峰), Chang-Gui Gu(顾长贵), Hui-Jie Yang(杨会杰). Chin. Phys. B, 2020, 29(8): 080501.
[13] Inverse Ising techniques to infer underlying mechanisms from data
Hong-Li Zeng(曾红丽), Erik Aurell. Chin. Phys. B, 2020, 29(8): 080201.
[14] Reconstruction of dynamic structures of experimental setups based on measurable experimental data only
Tian-Yu Chen(陈天宇), Yang Chen(陈阳), Hu-Jiang Yang(杨胡江), Jing-Hua Xiao(肖井华), Gang Hu(胡岗). Chin. Phys. B, 2018, 27(3): 030503.
[15] Extracting hidden weak sinusoidal signal with short duration from noisy data:Analytical theory and computational realization
Ying Zhang(张英), Zhaoyang Zhang(张朝阳), Hong Qian(钱弘), Gang Hu(胡岗). Chin. Phys. B, 2017, 26(10): 100508.
No Suggested Reading articles found!