Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 123201    DOI: 10.1088/1674-1056/addd82
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Comparison of high-order harmonic generation in defect-free and defective solids with different time delays

Shujie Zhao(赵书杰)1, Yuanzuo Li(李源作)1, Jun Zhang(张军)2, and Xuefei Pan(潘雪飞)1,†
1 College of Science, Northeast Forestry University, Harbin 150040, China;
2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  We theoretically investigate the high-order harmonic generation (HHG) of defect-free solids by solving the time-dependent Schrödinger equation (TDSE). The results show that the harmonic intensity can be enhanced, harmonic order can be extended, and modulation near the cutoff order becomes smaller for the second plateau by increasing the time delay. These effects are due to an increase of the electron population in higher energy bands, where the larger band gap allows electrons to release more energy, and the long electronic paths are suppressed. Additionally, we also investigate the HHG of defective solids by Bohmian trajectories (BT). It is found that the harmonic intensity of the second plateau can be further enhanced. Simultaneously, cutoff order is also extended due to Bohmian particles moving farther away from the defective zone.
Keywords:  high-order harmonic generation      defective solids      Bohmian trajectories  
Received:  03 April 2025      Revised:  22 May 2025      Accepted manuscript online:  28 May 2025
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: Project supported by the Natural Science Foundation of Jilin Province of China (Grant No. 20230101014JC), the Fundamental Research Funds for the Central Universities (Grant No. 2572021BC05), and the National Natural Science Foundation of China (Grant No. 12374265).
Corresponding Authors:  Xuefei Pan     E-mail:  panxf@nefu.edu.cn

Cite this article: 

Shujie Zhao(赵书杰), Yuanzuo Li(李源作), Jun Zhang(张军), and Xuefei Pan(潘雪飞) Comparison of high-order harmonic generation in defect-free and defective solids with different time delays 2025 Chin. Phys. B 34 123201

[1] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[2] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Y 2009 Nature 460 972
[3] Zhang J, Ge X L, Wang T, Xu T T, Guo J and Liu X S 2015 Phys. Rev. A 92 013418
[4] Huo X X, Wang S, Sun L, Xing Y H, Zhang J and Liu X S 2022 Phys. Rev. A 106 023102
[5] Sola I J, Mével E, Elouga L, Constant E, Strelkov V, Poletto L, Villoresi P, Benedetti E, Caumes J P, Stagira S, Vozzi C, Sansone G and Nisoli M 2006 Nat. Phys. 2 319
[6] Zhao K, Zhang Q, Chini M, Wu Y, Wang X W and Chang Z H 2012 Opt. Lett. 37 3891
[7] Corkum P B and Krausz F 2007 Nat. Phys. 3 381
[8] Géneaux R, Kaplan C J, Yue L, ROSS A D, Bækhhøj J E, Kraus P M, Chang H T, Guggenmos A, Huang M Y, Zürch M, Schafer K J, Neumark D M, Gaarde M B and Leone R 2007 Nat. Phys. 3 381
[9] Wózniak A P and Moszyński R 2024 Phys. Rev. A 109 013523
[10] Li L, Lan P F, He L X, Cao W, Zhang Q B and Lu P X 2020 Phys. Rev. Lett. 124 157403
[11] Ghimire S, Dichiara A D, Sistrunk E, Agostini P, Dimauro L F and Reis A 2011 Nat. Phys. 7 138
[12] You Y S, Reis D A and Ghimire S 2017 Nat. Phys. 13 345
[13] Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B and Reis D A 2016 Nature 534 520
[14] Li L, Lan P F, Zhu X S, Huang T F, Zhang Q B, Lein and Lu P X 2019 Phys. Rev. Lett. 122 193901
[15] Wang Y, Shao T J, Li X F, Liu Y, Jiang P Z, Zhang W, Zhang L F, Bian X B, Liu Y Q, Gong Q H and Wu C Y 2023 Opt. Lett. 31 3379
[16] Song X H, Yang S D, Zuo R X, Meier T and YangWF 2020 Phys. Rev. A 101 033410
[17] He Y L, Guo J, Gao F Y and Liu X S 2022 Phys. Rev. B 105 024305
[18] Jimeńez-galań Á, Bossaer C, Ernotte G, Parks A M, Silva R E F, Villeneuve D M, Staudte A, Brabec T, Luican-mayer A and Vampa G 2022 Nat. Commun. 14 8421
[19] Huttner U, Kira M and Koch S W 2017 Laser Photon. Rev. 105 1700049
[20] Kruchinin S Y, Krausz F and Yakovlev V S 2018 Rev. Mod. Phys. 90 021102
[21] Higuchi T, Stockman M I and Hommelhoff P 2014 Phys. Rev. Lett. 113 213901
[22] Mcdonald C R, Vampa G, Corkum P B and Brabec T 2015 Phys. Rev. A 92 033845
[23] Vampa G, Mcdonald C R, Orlando G, Klug D D, Corkum P B and Brabec T 2014 Phys. Rev. Lett. 113 073901
[24] Vampa G, Hammond T J, Thiré N, SchmidT B E, Légaré F, Mcdonald C R, Brabec T and Corkum P B 2015 Nature 522 462
[25] Liu H Z, Li Y L, You Y S, Ghimire S, Heinz T F and Reis D A 2017 Nat. Phys. 13 262
[26] Luu T T and Wörner H J 2018 Nat. Commun. 9 916
[27] Borsch M, Schmid C P, Weigl L, Schlauderer S, Hofmann N, Lange C, Steiner J T, Kock S W, Huber R and Kire M 2020 Science 370 1204
[28] Li J B, Zhang X, Yue S J, Wu H M, Hu B T and Du H C 2017 Opt. Express 25 18603
[29] Jin J Z, Xiao X R, Liang H, Wang M X, Chen S G, Gong Q H and Peng L Y 2018 Phys. Rev. A 97 043420
[30] Mrudul M S, Pattanayak A, Ivanov M and Dixit G 2019 Phys. Rev. A 100 043420
[31] Zhao Y T, Ma S Y, Jiang S C, Yang Y J, Zhao X and Chen J G 2019 Opt. Express 27 34392
[32] Tancogne-dejean N, Mücke O D, Kärtner F X and Rubio A 2017 Nat. Commun. 8 745
[33] Tancogne-dejean N, Mücke O D, Kärtner F X and Rubio A 2017 Phys. Rev. Lett. 118 087403
[34] Floss I, Lemell C, Wachter G, Smejkal V, Sato S A, Tong X M, Yabana K and Burgdörfer J 2018 Phys. Rev. A 97 011401
[35] Lewenstein M, Balcou P, Ivanov M Y, L’huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[36] L’huillier A, Lewenstein M, Sali`eres P and Balcou P 1993 Phys. Rev. A 48 R3433
[37] Amini K, Biegert J, Calegari F, Chacón A, Ciappina M F, Dauphin A, Efimov D K, Figueira De morisson faria C, Giergiel K, Gniewek P, Landsman A S, Lesiuk M, Mandrysz M, Maxwell A S, Moszyński R, Ortmann L, Antonio Pérez-hernández J, Picón A, Pisanty E, Prauznerbechcicki J, Sacha K, Suárez N, Za¨ır A, Zakrzewski J and Lewenstein M 2019 Rep. Progr. Phys. 82 116001
[38] Qiao Y, Wang N, Jiang S C, Yang Y J, Chen G J and Dorfman K 2024 Phys. Rev. B 110 075201
[39] Hoang V H and Le A T 2020 Phys. Rev. A 102 023112
[40] Han J X, Guan Z, Wang B Y and Jin C 2023 Chin. Phys. B 12 124210
[41] Qiao Y, Huo Y Q, Liang H Q, Chen J G, Liu W J, Yang Y J and Jiang S C 2023 Phys. Rev. B 107 075201
[42] Song Y, Guo F M, Li S Y, Chen J G, Zeng S L and Yang Y J 2012 Phys. Rev. A 86 033424
[43] Huang Y Y, Lai X Y and Liu X J 2018 Chin. Phys. B 27 073204
[44] Li D D, Duan J Q, Lin L and Zhang A 2021 Chaos 31 101101
[45] Lai X Y and Liu X J 2020 Chin. Phys. B 29 013205
[46] Pan X F, Li B, Qi T, Zhang J and Liu X S 2021 Phys. B: At. Mol. Opt. Phys. 54 025601
[47] Song S M, Wu L Y, Qiao Y, Zhou S S, Wang J, Guo F M and Yang Y J 2023 Symmetry 15 581
[48] Song Y, Han S, Yang Y J and Guo F M 2024 Chin. Phys. B 33 123201
[49] Jooya h Z, Telnov D A, Li P C and Chu S H 2015 Phys. Rev. A 91 063412
[50] Song Y, Guo F M, Li S Y, Chen J G, Zeng S L and Yang Y J 2012 Phys. Rev. A 86 033424
[51] Pan X F, Mu H B, Qi D W, Zhang J and Liu X S 2022 Europhys. Lett. 138 45001
[52] Peatross J and Johansen J 2014 Opt. Express 22 576
[53] Xu L and He F 2019 J. Opt. Soc. Am. B 36 840
[54] Guan Z, Zhou X X and Bian X B 2016 Phys. Rev. A 93 033852
[55] Liu Z, Zhao J, Dong W P, Liu J L, Huang Y D and Zhao Z X 2017 Phys. Rev. A 96 053403
[56] Du T Y, Guan Z, Zhou X X and Bian X B 2016 Phys. Rev. A 94 023419
[57] Jia G R, Wang X Q, Du T Y, Huang X H and Bian X B 2018 J. Chem. Phys. 149 154308
[58] Pan X F, Li B, Zhang J and Liu X S 2021 J. Phys. B: At. Mol. Opt. Phys. 54 025601
[59] Chen J Q, JiangWL, Qiao Y, Yang Y J and Chen J G 2025 Chin. Phys. Lett. 42 013201
[60] Qiao Y, Huo Y Q, Jiang S C, Yang Y J and Chen J G 2022 Opt. Express 30 9971
[61] Qiao Y, Chen J Q, Zhou S S, Chen J G, Jiang S C and Yang Y J 2024 Chin. Phys. Lett. 41 014205
[62] Edwards M R, Platonenko V T and Mikhailova J M 2014 Opt. Lett. 24 6823
[63] Feng L Q and Chu T S 2012 J. Electron Spectrosc. Relat. Phenom. 185 39
[64] Peng D, Pi L W, Frolov M V and Starace A F 2017 Phys. Rev. A 95 033413
[65] Frolov M V, Manakov N L, Minina A A, Vvedenskii N V and Slilaev A A 2018 Phys. Rev. Lett. 120 263203
[66] Pattanayak A, Mrudul M S and Dixit G 2020 Phys. Rev. A 101 013404
[67] Mrudul M S, Tancogne-dejean N, Rubio A and Dixit G 2020 npj Comput. Mater. 6 6617
[68] Ge X L, Du H, Wang Q, Guo J and Liu X S 2015 Chin. Phys. B 24 023201s
[69] Liu X, Zhu X S, Lan P F, Zhang X F, Wang D, Zhang Q B and Lu P X 2017 Phys. Rev. A 95 063419
[1] Machine learning approach to reconstruct dephasing time from solid HHG spectra
Jiahao Liu(刘佳豪), Xi Zhao(赵曦), Jun Wang(王俊), and Songbin Zhang(张松斌). Chin. Phys. B, 2025, 34(9): 097804.
[2] 3D-GTDSE: A GPU-based code for solving 3D-TDSE in Cartesian coordinates
Ke Peng(彭科), Aihua Liu(刘爱华), Jun Wang(王俊), and Xi Zhao(赵曦). Chin. Phys. B, 2025, 34(9): 094203.
[3] High-order harmonic generation of methane in an elliptically polarized field
Shu-Shan Zhou(周书山), Yu-Long Li(李玉龙), Zhi-Xue Zhao(赵志学), Man Xing(幸满), Nan Xu(许楠), Hao Wang(王浩), Jun Wang(王俊), Xi Zhao(赵曦), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2025, 34(6): 063202.
[4] Experimental manipulation of fine structures in high harmonic spectrum of aligned CO2 molecules
Ge-Wen Wang(王革文), Yi-Wen Zhao(赵逸文), Yi-Chen Wang(王一琛), Jing Ma(马婧), Bo-Dun Liu(刘博敦), Wei Jiang(姜威), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2025, 34(6): 063301.
[5] Frequency shifts of high-order harmonics from ZnO crystals by chirped laser pulses
Yu Zhao(赵宇), Xiao-Jin Liu(刘晓瑾), Shuang Wang(王爽), Xiao-Xin Huo(霍晓鑫), Yun-He Xing(邢云鹤), and Jun Zhang(张军). Chin. Phys. B, 2025, 34(3): 033201.
[6] Influence of excited states in high-order harmonic generation at intense mid-infrared field
Yan Fang(方言), Da-Wei Tian(田大纬), Yue Cao(曹玥), Xiao-Lei Hao(郝小雷), and Zheng Shu(舒正). Chin. Phys. B, 2025, 34(10): 103201.
[7] Interference of harmonics emitted by different tunneling momentum channels in laser fields
Ling-Yu Zhang(张玲玉), Zhuo-Xuan Xie(谢卓璇), Can Wang(王灿), Xin-Lei Ge(葛鑫磊), and Jing Guo(郭静). Chin. Phys. B, 2024, 33(9): 093201.
[8] Elliptically polarized high-order harmonic generation of Ar atom in an intense laser field
Jie Hu(胡杰), Yi-Chen Wang(王一琛), Qiu-Shuang Jing(景秋霜), Wei Jiang(姜威), Ge-Wen Wang(王革文), Yi-Wen Zhao(赵逸文), Bo Xiao(肖礴), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2024, 33(5): 054208.
[9] Generating attosecond pulses with controllable polarization from cyclic H32+ molecules by bichromatic circular fields
Si-Qi Zhang(张思琪), Bing Zhang(张冰), Bo Yan(闫博), Xiang-Qian Jiang(姜向前), and Xiu-Dong Sun(孙秀冬). Chin. Phys. B, 2024, 33(2): 023301.
[10] High-order harmonic generation of ZnO crystals in chirped and static electric fields
Ling-Yu Zhang(张玲玉), Yong-Lin He(何永林), Zhuo-Xuan Xie(谢卓璇), Fang-Yan Gao(高芳艳), Qing-Yun Xu(徐清芸), Xin-Lei Ge(葛鑫磊), Xiang-Yi Luo(罗香怡), and Jing Guo(郭静). Chin. Phys. B, 2024, 33(1): 013102.
[11] Elliptically polarized high-order harmonic generation in nitrogen molecules with cross-linearly polarized two-color laser fields
Chunyang Zhai(翟春洋), Yinmeng Wu(吴银梦), Lingling Qin(秦玲玲), Xiang Li(李翔), Luke Shi(史璐珂), Ke Zhang(张可), Shuaijie Kang(康帅杰), Zhengfa Li(李整法), Yingbin Li(李盈傧), Qingbin Tang(汤清彬), and Benhai Yu(余本海). Chin. Phys. B, 2023, 32(7): 073301.
[12] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[13] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[14] Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124208.
[15] Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre-Gaussian beam with nonzero orbital angular momentum
Jiaxin Han(韩嘉鑫), Zhong Guan(管仲), Beiyu Wang(汪倍羽), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124210.
No Suggested Reading articles found!