Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 104301    DOI: 10.1088/1674-1056/add7ac
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A tunable acoustic metasurface via one-dimensional mechanical adjustment for real-time focusing

Jie Hu(胡洁)†, Mengqi Jiang(姜梦琦), Rui Zang(藏瑞), and Yuhang Qian(钱宇航)
College of Information Science and Technology and College of Artificial Intelligence, Nanjing Forestry University, Nanjing 210000, China
Abstract  Adjustable or programmable metamaterials offer versatile functions, while the complex multi-dimensional regulation increases workload, and hinders their applications in practical scenarios. To address these challenges, we present a mechanically programmable acoustic metamaterial for real-time focal tuning via one-dimensional phase-gradient modulation in this paper. The device integrates a phase gradient structure with concave cavity channels and an x-shaped telescopic mechanical framework, enabling dynamic adjustment of inter-unit spacing (1 mm-3 mm) through a microcontroller-driven motor. By modulating the spacing between adjacent channels, the phase gradient is precisely controlled, allowing continuous focal shift from 50 mm to 300 mm along the $x$-axis at 7500 Hz. Broadband focusing is also discussed in the range 6800 Hz-8100 Hz, with transmission coefficients exceeding 0.5, ensuring high efficiency and robust performance. Experimental results align closely with simulations, validating the design's effectiveness and adaptability. Unlike conventional programmable metamaterials requiring multi-dimensional parameter optimization, this approach simplifies real-time control through single-axis mechanical adjustment, significantly reducing operational complexity. Due to the advantages of broadband focusing, simple control mode, real-time monitoring, and so on, the device may have extensive applications in the fields of acoustic imaging, nondestructive testing, ultrasound medical treatment, etc.
Keywords:  phase gradient structure      one-dimensional mechanical adjustment      adjustable focusing  
Received:  01 April 2025      Revised:  06 May 2025      Accepted manuscript online:  13 May 2025
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12374416).
Corresponding Authors:  Jie Hu     E-mail:  hujie@njfu.edu.cn

Cite this article: 

Jie Hu(胡洁), Mengqi Jiang(姜梦琦), Rui Zang(藏瑞), and Yuhang Qian(钱宇航) A tunable acoustic metasurface via one-dimensional mechanical adjustment for real-time focusing 2025 Chin. Phys. B 34 104301

[1] Chan V and Perlas A 2011 Basics of Ultrasound Imaging (New York: Springer)
[2] Gholampour A, Sakhaei S M and Andargoli S M H 2017 Ultrasonics 76 10
[3] Harary M, Segar D J, Huang K T, Tafel I J, Valdes P A and Cosgrove G R 2018 Neurosurgical Focus FOC 44 E2
[4] Darrow D P 2019 Neurotherapeutics 16 88
[5] Collins K, Brocken E, Bahler C D, Alabd A, Koch M O and Cheng L 2022 Human Pathology 119 79
[6] Lin S C, Tittmann B R and Huang T J 2012 J. Appl. Phys. 111 123510
[7] Celli P and Gonella S 2014 J. Appl. Phys. 115 103502
[8] Alagoz S, Alagoz B B, Sahin A and Nur S 2015 Chin. Phys. B 24 046201
[9] Han M L, Tang R Y, Ma N, Zhang G B and Zhang X F 2025 Chin. Phys. B 34 40702
[10] Ambati M, Fang N, Sun C and Zhang X 2007 Phys. Rev. B 75 195447
[11] Jung J, García-Vidal F J, Martín-Moreno L and Pendry J B 2009 Phys. Rev. B 79 153407
[12] Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X and Garcia-Vidal F J 2011 Nat. Phys. 7 52
[13] Park J J, Park C M, Lee K J B and Lee S H 2015 Appl. Phys. Lett. 106 051901
[14] Sun L J, Han Q B and Jin Q L 2025 Chin. Phys. B 34 14301
[15] Li Y, Jiang X, Li R Q, Liang B, Zou X Y, Yin L L and Cheng J C 2014 Phys. Rev. Appl. 2 064002
[16] Lan J, Li Y, Xu Y and Liu X 2017 Sci. Rep. 7 10587
[17] Zhu X F and Lau S K 2019 J. Appl. Phys. 126 224504
[18] Liang D, Hu G, Ding N, Ma Q, Guo G, Li Y, Tu J and Zhang D 2022 IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 69 377
[19] Popa B I, Zigoneanu L and Cummer S A 2013 Phys. Rev. B 88 024303
[20] Popa B I, Shinde D, Konneker A and Cummer S A 2015 Phys. Rev. B 91 220303
[21] Chen X, Liu P, Hou Z and Pei Y 2017 Sci. Rep. 7 9050
[22] Ma G, Fan X, Sheng P and Fink M 2018 Proc. Nat. Acad. Sci. USA 115 6638
[23] Tang Y F and Lin S Y 2023 Chin. Phys. B 32 034306
[24] Zhao S D, Chen A L,Wang Y S and Zhang C 2018 Phys. Rev. Appl. 10 054066
[25] Tian Z, Shen C, Li J, Reit E, Gu Y, Fu H, Cummer S A and Huang T J 2019 Adv. Funct. Mater. 29 1808489
[26] Zhai S, Song K, Ding C, Wang Y, Dong Y and Zhao X 2018 Materials 11 1976
[27] Wang X L, Yang J, Liang B and Cheng J C 2020 Appl. Phys. Express 13 014002
[28] Zhou H T, Fan S W, Li X S, Fu W X, Wang Y F and Wang Y S 2020 Smart Materials and Structures 29 065016
[29] Chen Z, Shao S, Negahban M and Li Z 2019 J. Phys. D: Appl. Phys. 52 395503
[30] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[1] Coupled oscillation model of spherical bubble cluster in liquid cavity wrapped by elastic shell
Xin-Yi Zuo(左馨怡), Rui Liu(刘睿), Zhao-Kang Lei(雷照康), Yu-Ting Wu(吴玉婷), Xiu-Ru Li(李秀如), and Cheng-Hui Wang(王成会). Chin. Phys. B, 2025, 34(10): 104302.
[2] Computation and analysis of the characteristic spectra of Eu(II) ions in single-bubble sonoluminescence
Xue-Ping Wang(王学坪) and Jin-Fu Liang(梁金福). Chin. Phys. B, 2025, 34(9): 094301.
[3] Effect of metal plate on ultrasonic cavitation field distribution
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), Peng-Fei Cao(曹鹏飞), Jian-Feng Li(李建锋), and Xiao-Qiang Bai(白小强). Chin. Phys. B, 2025, 34(5): 054302.
[4] Overcoming bandwidth limitations in space-coiled acoustic metamaterials through inclined perforated plate design
Jixin Liu(刘继鑫), Fengmin Wu(吴丰民), Ting Li(李婷), Junjun Wang(王军军), Xinye Zou(邹欣晔), and Dong Zhang(章东). Chin. Phys. B, 2025, 34(1): 014303.
[5] Lamb wave TDTE super-resolution imaging assisted by deep learning
Liu-Jia Sun(孙刘家), Qing-Bang Han(韩庆邦), and Qi-Lin Jin(靳琪琳). Chin. Phys. B, 2025, 34(1): 014301.
[6] Ultrasonic scalpel based on fusiform phononic crystal structure
Sha Wang(王莎), Junjie Shan(单俊杰), and Shuyu Lin(林书玉). Chin. Phys. B, 2024, 33(10): 104302.
[7] Dynamic modeling of cavitation bubble clusters: Effects of evaporation, condensation, and bubble—bubble interaction
Long Xu(许龙), Xin-Rui Yao(姚昕锐), and Yang Shen(沈阳). Chin. Phys. B, 2024, 33(4): 044702.
[8] Behaviors of cavitation bubbles driven by high-intensity ultrasound
Chen-Yang Huang(黄晨阳), Fan Li(李凡), Shi-Yi Feng(冯释毅), Cheng-Hui Wang(王成会), Shi Chen(陈时), Jing Hu(胡静), Xin-Rui He(何芯蕊), and Jia-Kai Song(宋家凯). Chin. Phys. B, 2024, 33(2): 024301.
[9] Discrete multi-step phase hologram for high frequency acoustic modulation
Meng-Qing Zhou(周梦晴), Zhao-Xi Li(李照希), Yi Li(李怡), Ye-Cheng Wang(王业成), Juan Zhang(张娟), Dong-Dong Chen(谌东东), Yi Quan(全熠), Yin-Tang Yang(杨银堂), and Chun-Long Fei(费春龙). Chin. Phys. B, 2024, 33(1): 014303.
[10] Ultra-broadband acoustic ventilation barrier based on multi-cavity resonators
Yu-Wei Xu(许雨薇), Yi-Jun Guan(管义钧), Cheng-Hao Wu(吴成昊), Yong Ge(葛勇), Qiao-Rui Si(司乔瑞), Shou-Qi Yuan(袁寿其), and Hong-Xiang Sun(孙宏祥). Chin. Phys. B, 2023, 32(12): 124303.
[11] Characteristic analysis of scattering field in two-layer media by Green's function
Ping Zhang(张萍), Zhi-Ying Liu(刘智颖), Shou-Guo Yan(阎守国), Juan Huang(黄娟), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2023, 32(6): 064301.
[12] Bubble nucleation in spherical liquid cavity wrapped by elastic medium
Xian-Mei Zhang(张先梅), Fan Li(李凡), Cheng-Hui Wang(王成会), Jing Hu(胡静), Run-Yang Mo(莫润阳), Zhuang-Zhi Shen(沈壮志), Jian-Zhong Guo(郭建中), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(6): 064303.
[13] Effect of magnetic field on expansion of ferrofluid-encapsulated microbubble
Zhiwei Du(杜芷玮), Fan Li(李凡), Ruiqi Pan(潘瑞琪), Runyang Mo(莫润阳), and Chenghui Wang(王成会). Chin. Phys. B, 2023, 32(6): 064302.
[14] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[15] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
No Suggested Reading articles found!