Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 104202    DOI: 10.1088/1674-1056/adde36
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of the buffer layer on the Casimir pressure of peptide films deposited on a substrate

Dingding Lv(吕丁丁)1, Shuai Zhou(周帅)1,3, Kaipeng Liu(柳开鹏)1, Shiwei Dai(戴士为)2, and Lixin Ge(葛力新)1,†
1 School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China;
2 College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China;
3 Department of Basic Courses, Zhengzhou University of Science and Technology, Zhengzhou 450064, China
Abstract  The Casimir pressure plays an important role in the adhesion stability of nanofilms at submicro scales. In this work, the Casimir pressure of peptide films deposited on a layered substrate is investigated. Three types of semi-infinite substrates, i.e., silica, silicon and gold, are considered. The buffer layer between the peptide film and substrate consists of silicon or silica. The switching sign of the Casimir pressure can be controlled in a region ranging from about 130 nm to 1000 nm, depending on the thickness of the buffer layer and the substrate. The results suggest that the critical thickness of peptide films for Casimir equilibrium increases (or decreases) by increasing the thickness of the silicon (or silica) buffer film. The influences of wetting and electrolyte screening on the Casimir pressure are also investigated. Our finding provides a theoretical guide for the adhesion stability of peptide films in organic electronics.
Keywords:  Casimir pressure      buffer layer      peptide films      electrolyte screening  
Received:  30 March 2025      Revised:  14 May 2025      Accepted manuscript online:  29 May 2025
PACS:  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  87.14.ef (Peptides)  
  61.20.Qg (Structure of associated liquids: electrolytes, molten salts, etc.)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804288) and the Natural Science Foundation of Henan (Grant No. 232300420120).
Corresponding Authors:  Lixin Ge     E-mail:  lixinge@hotmail.com

Cite this article: 

Dingding Lv(吕丁丁), Shuai Zhou(周帅), Kaipeng Liu(柳开鹏), Shiwei Dai(戴士为), and Lixin Ge(葛力新) Effects of the buffer layer on the Casimir pressure of peptide films deposited on a substrate 2025 Chin. Phys. B 34 104202

[1] Chen H, Zhang W, Li M, He G and Guo X 2020 Chem. Rev. 120 2879
[2] Dimitrakopoulos C D and Malenfant P R L 2002 Adv. Mater. 14 99
[3] Riede M, Spoltore D and Leo K 2021 Adv. Energy Mater. 11 2002653
[4] Duan L and Uddin A 2020 Adv. Sci. 7 1903259
[5] Zhang K, Song P, Ma F and Li Y 2024 Chin. Phys. B 33 068402
[6] Jeon S O, Lee K H, Kim J S, Ihn S G, Chung Y S, Kim J W, Lee H, Kim S, Choi H and Lee J Y 2021 Nat. Photonics 15 208
[7] Reineke S, Thomschke M, Lüssem B and Leo K 2013 Rev. Mod. Phys. 85 1245
[8] Ren X, Yu H Y and Zhang Y 2024 Acta Phys. Sin. 73 047801 (in Chinese)
[9] Feinberg G, Sucher J and Au C K 1989 Phys. Rep. 180 83
[10] Boinovich L and Emelyanenko A 2011 Adv. Colloid Interface Sci. 165 60
[11] Parsegian V A 2005 Van Der Waals Forces: a Handbook for Biologists, Chemists, Engineers, and Physicists Cambridge (Published: Cambridge University Press) pp. 47-48
[12] Bordag M, Mohideen U and Mostepanenko V M 2001 Phys. Rep. 353 1
[13] Klimchitskaya G L, Mohideen U and Mostepanenko V M 2009 Rev. Mod. Phys. 81 1827
[14] Woods L M, Dalvit D A R, Tkatchenko A, Rodriguez-Lopez P, Rodriguez A W and Podgornik R 2016 Rev. Mod. Phys. 88 045003
[15] Miao B 2020 Acta Phys. Sin. 69 080505 (in Chinese)
[16] Gong T, Corrado M R, Mahbub A R, Shelden C and Munday J N 2021 Nanophotonics 10 523
[17] Chan H B, Aksyuk V A, Kleiman R N, Bishop D J and Capasso F 2001 Science 291 1941
[18] Shelden C, Spreng B and Munday J N 2024 Appl. Phys. Rev. 11 041325
[19] Hu Y, Wu X, Liu H, Ge W, Zhang J and Huang X 2024 ACS Photonics 11 1998
[20] Munkhbat B, Canales A, Küç üköz B, Baranov D G and Shegai T O 2021 Nature 597 214
[21] Küç üköz B, Kotov O V, Canales A, Polyakov A Y, Agrawal A V, Antosiewicz T J and Shegai T O 2024 Sci. Adv. 10 eadn1825
[22] Esteso V, Frustaglia D, Carretero-Palacios S and Míguez H 2024 Adv. Phys. Res. 3 2300065
[23] Ge L, Liu K, Gong K and Podgornik R 2024 Phys. Rev. Appl. 21 044040
[24] Sloan J, Rivera N, Joannopoulos J D and Soljačić M 2021 Phys. Rev. Lett. 127 053603
[25] Li R, Long Y and Zhang X 2025 Chin. Phys. B 34 020307
[26] Li N, Lin Z, Wei M, Liao M, Xu J, Ke S and Yang Y 2023 Chin. Phys. B 32 120301
[27] Li Y, Milton K A, Brevik I, Malyi O I, Thiyam P, Persson C, Parsons D F and Boström M 2022 Phys. Rev. B 105 014203
[28] Esteso V, Carretero-Palacios S, MacDowell L G, Fiedler J, Parsons D F, Spallek F, Míguez H, Persson C, Buhmann S Y, Brevik I and Boström M 2020 Phys. Chem. Chem. Phys. 22 11362
[29] Boström M, Malyi O I, Parashar P, Shajesh K V, Thiyam P, Milton K A, Persson C, Parsons D F and Brevik I 2017 Phys. Rev. B 95 155422
[30] Ge L, Shi X, Li B and Gong K 2023 Phys. Rev. E 107 064402
[31] Baranov M A, Klimchitskaya G L, Mostepanenko V M and Velichko E N 2019 Phys. Rev. E 99 022410
[32] Klimchitskaya G L, Mostepanenko V M and Velichko E N 2020 Phys. Rev. B 102 161405
[33] Klimchitskaya G L, Mostepanenko V M and Velichko E N 2021 Phys. Rev. B 103 245421
[34] Velichko E, Baranov M and Mostepanenko V 2020 Mod. Phys. Lett. A 35 2040020
[35] Mostepanenko V M, Velichko E N and Baranov M A 2020 J. Electron. Sci. Technol. 18 100023
[36] Klimchitskaya G L, Mostepanenko V M and Tsybin O Y 2022 Symmetry 14 2196
[37] Zhao R, Koschny T, Economou E N and Soukoulis C M 2011 Phys. Rev. B 83 075108
[38] Zhou S, Liu K, Dai S and Ge L 2025 Acta Phys. Sin. 74 014202 (in Chinese)
[39] Ge L, Shi X, Xu Z and Gong K 2020 Phys. Rev. B 101 104107
[40] Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 J. Phys.: Condens. Matter 25 215301
[41] Moazzami Gudarzi M and Aboutalebi S H 2021 Sci. Adv. 7 2272
[42] Esteso V, Carretero-Palacios S and Míguez H 2016 J. Appl. Phys. 119 144301
[43] Munday J N, Capasso F and Parsegian V A 2009 Nature 457 170
[44] Ge L, Shi X, Liu L and Gong K 2020 Phys. Rev. B 102 075428
[45] Wang Y, Narayanan S R and Wu W 2017 ACS Nano 11 8421
[46] Zhang C, Li Y, Lin B, Tang J, Sun Q, Xie W, Deng H, Zheng Q and Cheng S 2023 Chin. Phys. B 32 028801
[47] Hu Y, Wu X, Liu H and Huang X 2024 Nanophotonics 13 2983
[1] Wedge-shaped HfO2 buffer layer-induced field-free spin—orbit torque switching of HfO2/Pt/Co structure
Jian-Hui Chen(陈建辉), Meng-Fan Liang(梁梦凡), Yan Song(宋衍), Jun-Jie Yuan(袁俊杰), Meng-Yang Zhang(张梦旸), Yong-Ming Luo(骆泳铭), and Ning-Ning Wang(王宁宁). Chin. Phys. B, 2024, 33(4): 047503.
[2] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[3] Novel GaN-based double-channel p-heterostructure field-effect transistors with a p-GaN insertion layer
Xuerui Niu(牛雪锐), Bin Hou(侯斌), Meng Zhang(张濛), Ling Yang(杨凌), Mei Wu(武玫), Xinchuang Zhang(张新创), Fuchun Jia(贾富春), Chong Wang(王冲), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(10): 108101.
[4] Tetraalkyl-substituted zinc phthalocyanines used as anode buffer layers for organic light-emitting diodes
Qian Chen(陈潜), Songhe Yang(杨松鹤), Lei Dong(董磊), Siyuan Cai(蔡思源), Jiaju Xu(许家驹), Zongxiang Xu(许宗祥). Chin. Phys. B, 2020, 29(1): 017302.
[5] Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation
Zhen-Wu Jiang(姜振武), Shou-Shuai Gao(高守帅), Si-Yu Wang(王思宇), Dong-Xiao Wang(王东潇), Peng Gao(高鹏), Qiang Sun(孙强), Zhi-Qiang Zhou(周志强), Wei Liu(刘玮), Yun Sun(孙云), Yi Zhang(张毅). Chin. Phys. B, 2019, 28(4): 048801.
[6] Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy
Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚). Chin. Phys. B, 2019, 28(11): 114401.
[7] Improvement of electro-optic performances in white organic light emitting diodes with color stability by buffer layer and multiple dopants structure
Zhi-Qi Kou(寇志起), Yu Tang(唐宇), Li-Ping Yang(杨丽萍), Fei-Yu Yang(杨飞宇), Wen-Jun Guo(郭文军). Chin. Phys. B, 2018, 27(10): 107801.
[8] Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers
Taohong Wang(王桃红), Changbo Chen(陈长博), Kunping Guo(郭坤平), Guo Chen(陈果), Tao Xu(徐韬), Bin Wei(魏斌). Chin. Phys. B, 2016, 25(3): 038402.
[9] Improved performance of microcrystalline silicon solar cell with graded-band-gap silicon oxide buffer layer
Shi Zhen-Liang (史振亮), Ji Yun (季云), Yu Wei (于威), Yang Yan-Bin (杨彦斌), Cong Ri-Dong (丛日东), Chen Ying-Juan (陈英娟), Li Xiao-Wei (李晓苇), Fu Guang-Sheng (傅广生). Chin. Phys. B, 2015, 24(7): 078105.
[10] Effect of CoSi2 buffer layer on structure and magnetic properties of Co films grown on Si (001) substrate
Hu Bo (胡泊), He Wei (何为), Ye Jun (叶军), Tang Jin (汤进), Syed Sheraz Ahmad, Zhang Xiang-Qun (张向群), Cheng Zhao-Hua (成昭华). Chin. Phys. B, 2015, 24(1): 017502.
[11] Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition
Li Ming (黎明), Wang Yong (王勇), Wong Kai-Ming (王凯明), Lau Kei-May (刘纪美). Chin. Phys. B, 2014, 23(3): 038403.
[12] UV-ozone-treated MoO3 as the hole-collecting buffer layer for high-efficiency solution-processed SQ:PC71BM photovoltaic devices
Yang Qian-Qian (杨倩倩), Yang Dao-Bin (杨道宾), Zhao Su-Ling (赵谡玲), Huang Yan (黄艳), Xu Zheng (徐征), Gong Wei (龚伟), Fan Xing (樊星), Liu Zhi-Fang (刘志方), Huang Qing-Yu (黄清雨), Xu Xu-Rong (徐叙瑢). Chin. Phys. B, 2014, 23(3): 038405.
[13] Growth and characterization of straight InAs/GaAs nanowireheterostructures on Si substrate
Yan Xin (颜鑫), Zhang Xia (张霞), Li Jun-Shuai (李军帅), Lü Xiao-Long (吕晓龙), Ren Xiao-Min (任晓敏), Huang Yong-Qing (黄永清). Chin. Phys. B, 2013, 22(7): 076102.
[14] Effects of NPB anode buffer layer on charge collection in ZnO/MEH-PPV hybrid solar cells
Gong Wei (龚伟), Xu Zheng (徐征), Zhao Su-Ling (赵谡玲), Liu Xiao-Dong (刘晓东), Fan Xing (樊星), Yang Qian-Qian (杨倩倩), Kong Chao (孔超). Chin. Phys. B, 2013, 22(12): 128402.
[15] Flexible white top-emitting organic light-emitting diode with a MoOx roughness improvement layer
Chen Shu-Fen (陈淑芬), Guo Xu (郭旭), Wu Qiang (邬强), Zhao Xiao-Fei (赵晓飞), Shao Ming (邵茗), Huang Wei (黄维). Chin. Phys. B, 2013, 22(12): 128506.
No Suggested Reading articles found!