| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Effects of the buffer layer on the Casimir pressure of peptide films deposited on a substrate |
| Dingding Lv(吕丁丁)1, Shuai Zhou(周帅)1,3, Kaipeng Liu(柳开鹏)1, Shiwei Dai(戴士为)2, and Lixin Ge(葛力新)1,† |
1 School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China; 2 College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China; 3 Department of Basic Courses, Zhengzhou University of Science and Technology, Zhengzhou 450064, China |
|
|
|
|
Abstract The Casimir pressure plays an important role in the adhesion stability of nanofilms at submicro scales. In this work, the Casimir pressure of peptide films deposited on a layered substrate is investigated. Three types of semi-infinite substrates, i.e., silica, silicon and gold, are considered. The buffer layer between the peptide film and substrate consists of silicon or silica. The switching sign of the Casimir pressure can be controlled in a region ranging from about 130 nm to 1000 nm, depending on the thickness of the buffer layer and the substrate. The results suggest that the critical thickness of peptide films for Casimir equilibrium increases (or decreases) by increasing the thickness of the silicon (or silica) buffer film. The influences of wetting and electrolyte screening on the Casimir pressure are also investigated. Our finding provides a theoretical guide for the adhesion stability of peptide films in organic electronics.
|
Received: 30 March 2025
Revised: 14 May 2025
Accepted manuscript online: 29 May 2025
|
|
PACS:
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
| |
87.14.ef
|
(Peptides)
|
| |
61.20.Qg
|
(Structure of associated liquids: electrolytes, molten salts, etc.)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804288) and the Natural Science Foundation of Henan (Grant No. 232300420120). |
Corresponding Authors:
Lixin Ge
E-mail: lixinge@hotmail.com
|
Cite this article:
Dingding Lv(吕丁丁), Shuai Zhou(周帅), Kaipeng Liu(柳开鹏), Shiwei Dai(戴士为), and Lixin Ge(葛力新) Effects of the buffer layer on the Casimir pressure of peptide films deposited on a substrate 2025 Chin. Phys. B 34 104202
|
[1] Chen H, Zhang W, Li M, He G and Guo X 2020 Chem. Rev. 120 2879 [2] Dimitrakopoulos C D and Malenfant P R L 2002 Adv. Mater. 14 99 [3] Riede M, Spoltore D and Leo K 2021 Adv. Energy Mater. 11 2002653 [4] Duan L and Uddin A 2020 Adv. Sci. 7 1903259 [5] Zhang K, Song P, Ma F and Li Y 2024 Chin. Phys. B 33 068402 [6] Jeon S O, Lee K H, Kim J S, Ihn S G, Chung Y S, Kim J W, Lee H, Kim S, Choi H and Lee J Y 2021 Nat. Photonics 15 208 [7] Reineke S, Thomschke M, Lüssem B and Leo K 2013 Rev. Mod. Phys. 85 1245 [8] Ren X, Yu H Y and Zhang Y 2024 Acta Phys. Sin. 73 047801 (in Chinese) [9] Feinberg G, Sucher J and Au C K 1989 Phys. Rep. 180 83 [10] Boinovich L and Emelyanenko A 2011 Adv. Colloid Interface Sci. 165 60 [11] Parsegian V A 2005 Van Der Waals Forces: a Handbook for Biologists, Chemists, Engineers, and Physicists Cambridge (Published: Cambridge University Press) pp. 47-48 [12] Bordag M, Mohideen U and Mostepanenko V M 2001 Phys. Rep. 353 1 [13] Klimchitskaya G L, Mohideen U and Mostepanenko V M 2009 Rev. Mod. Phys. 81 1827 [14] Woods L M, Dalvit D A R, Tkatchenko A, Rodriguez-Lopez P, Rodriguez A W and Podgornik R 2016 Rev. Mod. Phys. 88 045003 [15] Miao B 2020 Acta Phys. Sin. 69 080505 (in Chinese) [16] Gong T, Corrado M R, Mahbub A R, Shelden C and Munday J N 2021 Nanophotonics 10 523 [17] Chan H B, Aksyuk V A, Kleiman R N, Bishop D J and Capasso F 2001 Science 291 1941 [18] Shelden C, Spreng B and Munday J N 2024 Appl. Phys. Rev. 11 041325 [19] Hu Y, Wu X, Liu H, Ge W, Zhang J and Huang X 2024 ACS Photonics 11 1998 [20] Munkhbat B, Canales A, Küç üköz B, Baranov D G and Shegai T O 2021 Nature 597 214 [21] Küç üköz B, Kotov O V, Canales A, Polyakov A Y, Agrawal A V, Antosiewicz T J and Shegai T O 2024 Sci. Adv. 10 eadn1825 [22] Esteso V, Frustaglia D, Carretero-Palacios S and Míguez H 2024 Adv. Phys. Res. 3 2300065 [23] Ge L, Liu K, Gong K and Podgornik R 2024 Phys. Rev. Appl. 21 044040 [24] Sloan J, Rivera N, Joannopoulos J D and Soljačić M 2021 Phys. Rev. Lett. 127 053603 [25] Li R, Long Y and Zhang X 2025 Chin. Phys. B 34 020307 [26] Li N, Lin Z, Wei M, Liao M, Xu J, Ke S and Yang Y 2023 Chin. Phys. B 32 120301 [27] Li Y, Milton K A, Brevik I, Malyi O I, Thiyam P, Persson C, Parsons D F and Boström M 2022 Phys. Rev. B 105 014203 [28] Esteso V, Carretero-Palacios S, MacDowell L G, Fiedler J, Parsons D F, Spallek F, Míguez H, Persson C, Buhmann S Y, Brevik I and Boström M 2020 Phys. Chem. Chem. Phys. 22 11362 [29] Boström M, Malyi O I, Parashar P, Shajesh K V, Thiyam P, Milton K A, Persson C, Parsons D F and Brevik I 2017 Phys. Rev. B 95 155422 [30] Ge L, Shi X, Li B and Gong K 2023 Phys. Rev. E 107 064402 [31] Baranov M A, Klimchitskaya G L, Mostepanenko V M and Velichko E N 2019 Phys. Rev. E 99 022410 [32] Klimchitskaya G L, Mostepanenko V M and Velichko E N 2020 Phys. Rev. B 102 161405 [33] Klimchitskaya G L, Mostepanenko V M and Velichko E N 2021 Phys. Rev. B 103 245421 [34] Velichko E, Baranov M and Mostepanenko V 2020 Mod. Phys. Lett. A 35 2040020 [35] Mostepanenko V M, Velichko E N and Baranov M A 2020 J. Electron. Sci. Technol. 18 100023 [36] Klimchitskaya G L, Mostepanenko V M and Tsybin O Y 2022 Symmetry 14 2196 [37] Zhao R, Koschny T, Economou E N and Soukoulis C M 2011 Phys. Rev. B 83 075108 [38] Zhou S, Liu K, Dai S and Ge L 2025 Acta Phys. Sin. 74 014202 (in Chinese) [39] Ge L, Shi X, Xu Z and Gong K 2020 Phys. Rev. B 101 104107 [40] Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 J. Phys.: Condens. Matter 25 215301 [41] Moazzami Gudarzi M and Aboutalebi S H 2021 Sci. Adv. 7 2272 [42] Esteso V, Carretero-Palacios S and Míguez H 2016 J. Appl. Phys. 119 144301 [43] Munday J N, Capasso F and Parsegian V A 2009 Nature 457 170 [44] Ge L, Shi X, Liu L and Gong K 2020 Phys. Rev. B 102 075428 [45] Wang Y, Narayanan S R and Wu W 2017 ACS Nano 11 8421 [46] Zhang C, Li Y, Lin B, Tang J, Sun Q, Xie W, Deng H, Zheng Q and Cheng S 2023 Chin. Phys. B 32 028801 [47] Hu Y, Wu X, Liu H and Huang X 2024 Nanophotonics 13 2983 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|