Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 096201    DOI: 10.1088/1674-1056/add4ff
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of impact velocity on spall behaviors of nanocrystalline iron: Molecular dynamics study

Li-Qiong Chen(陈利琼), Kui Zhao(赵奎), Kai Zhang(张开)†, Ze-Zhi Wen(文泽智), Hou-Jin Mei(梅后金), and Zhen-Bao Xiong(熊珍宝)
School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610000, China
Abstract  This study investigates the effect of shock velocity ($u_{\rm p}$) on damage evolution mechanisms in nanocrystalline iron via molecular dynamics simulations. As $u_{\rm p}$ increases, shock wave propagation accelerates, and stress distribution transitions from grain boundary concentration to homogeneity. This causes a transition in fracture mode from cleavage to ductile behavior. When $u_{\rm p}$ exceeds 1.5 km$\cdot$s$^{-1}$, micro-spallation emerges as the dominant failure mode. During micro-spallation, localized melting within the material impedes the propagation of the shock wave. As $u_{\rm p}$ increases, the growth rate of the void volume fraction initially rises but then decreases. Higher $u_{\rm p}$ leads to earlier void nucleation. At lower $u_{\rm p}$, the cavitation of the model is mainly characterized by the growth and penetration of a few voids. With increasing $u_{\rm p}$, the number of voids grows, and their interactions expand the delamination damage region. The spall strength demonstrates stage-specific dependence on $u_{\rm p}$. In the classical spallation stage (C_I), temperature softening reduces spall strength. In the plastic strengthening regime (C_II), strain hardening enhances spall strength. In the micro-spallation stage (M_III), further increases in $u_{\rm p}$ cause melting during tensile and compressive phases, reducing spall strength. Finally, in the compression-melting regime (M_IV), local temperatures exceed the melting point, diminishing plastic damage and accelerating spall strength reduction. This study provides new insights into the dynamic response of nanocrystalline iron.
Keywords:  nanocrystalline iron      shock response      fragmentation      spallation      molecular dynamics  
Received:  01 March 2025      Revised:  28 April 2025      Accepted manuscript online:  07 May 2025
PACS:  62.50.Ef (Shock wave effects in solids and liquids)  
  02.70.Ns (Molecular dynamics and particle methods)  
  81.40.Np (Fatigue, corrosion fatigue, embrittlement, cracking, fracture, and failure)  
Corresponding Authors:  Kai Zhang     E-mail:  202221000831@stu.swpu.edu.cn

Cite this article: 

Li-Qiong Chen(陈利琼), Kui Zhao(赵奎), Kai Zhang(张开), Ze-Zhi Wen(文泽智), Hou-Jin Mei(梅后金), and Zhen-Bao Xiong(熊珍宝) Effect of impact velocity on spall behaviors of nanocrystalline iron: Molecular dynamics study 2025 Chin. Phys. B 34 096201

[1] Gianmaria D L, Antonio F, Giusy T and Raffaele L 2021 Constr. Build. Mater. 302 124132
[2] Lian L Y, Zhang X W, Liu Y, Li J and Wang R Q 2023 Chin. Phys. B 32 077501
[3] Sherpa B B, Izumi Y, Inao D, Tanaka S and Hokamoto K 2025 Mater. Today Commun. 42 111536
[4] Kerrouche R, Dadouche A and Boukraa S 2023 Tribol. Int. 185 108495
[5] Wang Y, Liu J, Tang X,Wang Y, An H and Yi H 2023 Resour. Conserv. Recycl. 194 106994
[6] Wei W and Yu X 2020 Mater. Today Commun. 24 101217
[7] Lin F, Wang L, Li Z, Yin L, Wu J, Zheng D, Bao M, Liu P, Zhai H and Shu K 2025 Int. J. Fatigue 193 108760
[8] Mussa A, Krakhmalev P and Bergström J 2020 Wear 444-445 203119
[9] Xie H, Ma T, Yu T and Yin F 2021 Mater. Today Commun. 26 101961
[10] Zhang X, Deng Y, Chen J and Hu W 2021 Mater. Today Commun. 29 102893
[11] Germann T C, Kadau K, Lomdahl P S and Holian B L 2005 Phys. Rev. B 72 064120
[12] Hawreliak J, Colvin J D, Kalantar D H, et al. 2006 Phys. Rev. B 74 184107
[13] Kadau K, Germann T C, Lomdahl P S and Holian B L 2002 Science 296 1681
[14] Kadau K, Germann T C, Lomdahl P S and Holian B L 2002 AIP Conference Proceedings 620 351
[15] Peterson E L, Minshall S and Bancroft D 1956 J. Appl. Phys. 27 291
[16] Shockey D, Curran D and Carli P D 1975 J. Appl. Phys. 46 3766
[17] Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E and Eggert J H 2005 Phys. Rev. Lett. 95 075501
[18] Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E and Eggert J H 2005 Phys. Plasmas 12 92703
[19] Wang F M and Ingalls R 1998 Phys. Rev. B 57 5647
[20] Jiang L, Li M, Fu B Q, Cui J C and Hou Q 2024 Chin. Phys. B 33 036103
[21] Kanel’ G I, Dremin A N and Anan’in A V 1975 Combustion, Explosion, and Shock Waves 9 381
[22] Johnson P C, Stein B A and Davis R S 1962 J. Appl. Phys. 33 557
[23] Gluzman V D, Kanel’ G I, Loskutov V F, Fortov V E and Khorev I E 1985 Strength Mater-Engl. Tr. 17 1093
[24] Gunkelmann N, Bringa E M, Tramontina D R, Ruestes C J, Suggit M J, Higginbotham A, Wark J S and Urbassek H M 2014 Phys. Rev. B 89 140102
[25] Gunkelmann N, Tramontina D R, Bringa E M and Urbassek H M 2014 New J. Phys. 16 093032
[26] Wang K, ZhuW, Xiao S, Chen K, Deng H and Hu W 2015 Int. J. Plast. 71 218
[27] Wang K, Xiao S, Deng H, Zhu W and Hu W 2014 Int. J. Plast. 59 180
[28] Amadou N, Rességuier T D, Dragon A and Brambrink E 2018 Phys. Rev. B 98 024104
[29] Yu J, Shao J, Shu H, Huang X and Fu S 2024 Mater. Today Commun. 39 109291
[30] Jiang S, Huang Y, Wang K, Li X, Deng H, Xiao S, Zhu W and Hu W 2021 J. Appl. Phys. 130 015107
[31] Huang Y, Xiong Y, Li P, Li X, Xiao S, Deng H, Zhu W and Hu W 2019 Int. J. Plast. 114 215
[32] Zhang X, Chen J, Hu W, Zhu W, Xiao S, Deng H and Cai M 2019 J. Appl. Phys. 126 045901
[33] Zhang X, Wang K, Zhu W, Chen J, Cai M, Xiao S, Deng H and Hu W 2018 J. Appl. Phys. 123 045105
[34] Wu L, Wang K, Xiao S, Deng H, Zhu W and Hu W 2016 Comput. Mater. Sci. 122 1
[35] Zhang F,Dong J Q, Xie Z Y, He Z Y, Shu H,Wang R R, Xiong J, Jia G, Fang Z H, Wang W, Xiao D W, Lei A L, Chen J and Huang X G 2024 Chin. Phys. B 33 106101
[36] Cui X, Zhu W, He H, Deng X and Li Y 2008 Phys. Rev. B 78 024115
[37] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in ’t Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171
[38] Amadou N and Rességuier T D 2023 Phys. Rev. B 108 174109
[39] Urbassek H M, Ackland G J, Bringa E M, Gunkelmann N, Ruestes C J and Kang K 2012 Phys. Rev. B 86 144111
[40] Hoang-Thien Luu R J R, Martin Rudolph, Eduardo M Bringa, Timothy C Germann, David Rafaja, and Gunkelmann N 2020 Phys. Rev. B 102 020102
[41] Feng L, Zhang X, Li W, Xiang M and Yao X 2023 Int. J. Mech. Sci. 256 108536
[42] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012
[43] Wu D, Zhu Y, Zhao L, Huang M and Li Z 2021 J. Appl. Phys. 129 175110
[44] Chen P, Wang X, Wang P and He A M 2022 Int. J. Mech. Sci. 220 107122
[45] Zhu Y, Hu J, Wei Q, Zhang J, Sun Y, Luo G and Shen Q 2023 Mech. Mater. 186 104809
[46] Ma K and Dongare A M 2022 J. Mater. Sci. 57 12556
[47] Zhang W, Liu Z, Liu Z and Cai L 2015 Phys. Earth Planet. Inter. 244 69
[48] Alf D, egrave, Price G D and Gillan M J 2002 Phys. Rev. B 65 165118
[49] Bouchet J, Mazevet S, Morard G, Guyot F and Musella R 2013 Phys. Rev. B 87 094102
[50] Luo S N, Strachan A and Swift D C 2004 J. Chem. Phys. 120 11640
[1] Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect
Ke Wu(吴可), Zeyi Du(杜泽依), Hongyang Liu(刘洪洋), Nanyun Bao(包南云), Chengke Xu(许成科), Hongrui Wang(王泓睿), Qunchao Tong(童群超), Bo Chen(陈博), Dongdong Kang(康冬冬), Guang Wang(王广), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2025, 34(8): 087104.
[2] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[3] Solubility parameters of supercritical CO2 and CO2+H2O fluids: A molecular dynamics study
Junliang Wang(王军良), Jiaqing Fang(方佳清), Ting Wu(吴婷), Quanyuan Wang(王泉源), Zhiyan Pan(潘志彦), Mian Hu(胡沔), and Min Wu(吴旻). Chin. Phys. B, 2025, 34(8): 088201.
[4] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[5] Molecular simulation study on phase separation of immunoglobulin G
Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2025, 34(8): 088701.
[6] Isotopic effects in two-body fragmentation process of water dications induced by electron-impact ionization
Xiaorui Xue(薛晓睿), Jiaqi Zhou(周家琪), Xintai Hao(郝鑫泰), Lei Wang(王磊), Peng Li(李鹏), Qibo Ma(马启博), and Xueguang Ren(任雪光). Chin. Phys. B, 2025, 34(7): 073401.
[7] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[8] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[9] Fragmentation dynamics of nitric oxide induced by low-energy heavy ions
Zhixin Li(李志欣), Kaizhao Lin(林楷钊), Xiaolong Zhu(朱小龙), Zhiliang Li(李志亮), Hang Yuan(苑航), Yong Gao(高永), Dalong Guo(郭大龙), Dongmei Zhao(赵冬梅), Shaofeng Zhang(张少锋), and Xinwen Ma(马新文). Chin. Phys. B, 2025, 34(5): 053401.
[10] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[11] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
[12] Effect of copper/tungsten heterophase interface on radiation resistance: Insights from atomistic simulations
Wen Chen(陈文), Min Li(李敏), Bao-Qin Fu(付宝勤), Tun Chen(陈暾), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2025, 34(4): 046108.
[13] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[14] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[15] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
No Suggested Reading articles found!