| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of impact velocity on spall behaviors of nanocrystalline iron: Molecular dynamics study |
| Li-Qiong Chen(陈利琼), Kui Zhao(赵奎), Kai Zhang(张开)†, Ze-Zhi Wen(文泽智), Hou-Jin Mei(梅后金), and Zhen-Bao Xiong(熊珍宝) |
| School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610000, China |
|
|
|
|
Abstract This study investigates the effect of shock velocity ($u_{\rm p}$) on damage evolution mechanisms in nanocrystalline iron via molecular dynamics simulations. As $u_{\rm p}$ increases, shock wave propagation accelerates, and stress distribution transitions from grain boundary concentration to homogeneity. This causes a transition in fracture mode from cleavage to ductile behavior. When $u_{\rm p}$ exceeds 1.5 km$\cdot$s$^{-1}$, micro-spallation emerges as the dominant failure mode. During micro-spallation, localized melting within the material impedes the propagation of the shock wave. As $u_{\rm p}$ increases, the growth rate of the void volume fraction initially rises but then decreases. Higher $u_{\rm p}$ leads to earlier void nucleation. At lower $u_{\rm p}$, the cavitation of the model is mainly characterized by the growth and penetration of a few voids. With increasing $u_{\rm p}$, the number of voids grows, and their interactions expand the delamination damage region. The spall strength demonstrates stage-specific dependence on $u_{\rm p}$. In the classical spallation stage (C_I), temperature softening reduces spall strength. In the plastic strengthening regime (C_II), strain hardening enhances spall strength. In the micro-spallation stage (M_III), further increases in $u_{\rm p}$ cause melting during tensile and compressive phases, reducing spall strength. Finally, in the compression-melting regime (M_IV), local temperatures exceed the melting point, diminishing plastic damage and accelerating spall strength reduction. This study provides new insights into the dynamic response of nanocrystalline iron.
|
Received: 01 March 2025
Revised: 28 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
62.50.Ef
|
(Shock wave effects in solids and liquids)
|
| |
02.70.Ns
|
(Molecular dynamics and particle methods)
|
| |
81.40.Np
|
(Fatigue, corrosion fatigue, embrittlement, cracking, fracture, and failure)
|
|
Corresponding Authors:
Kai Zhang
E-mail: 202221000831@stu.swpu.edu.cn
|
Cite this article:
Li-Qiong Chen(陈利琼), Kui Zhao(赵奎), Kai Zhang(张开), Ze-Zhi Wen(文泽智), Hou-Jin Mei(梅后金), and Zhen-Bao Xiong(熊珍宝) Effect of impact velocity on spall behaviors of nanocrystalline iron: Molecular dynamics study 2025 Chin. Phys. B 34 096201
|
[1] Gianmaria D L, Antonio F, Giusy T and Raffaele L 2021 Constr. Build. Mater. 302 124132 [2] Lian L Y, Zhang X W, Liu Y, Li J and Wang R Q 2023 Chin. Phys. B 32 077501 [3] Sherpa B B, Izumi Y, Inao D, Tanaka S and Hokamoto K 2025 Mater. Today Commun. 42 111536 [4] Kerrouche R, Dadouche A and Boukraa S 2023 Tribol. Int. 185 108495 [5] Wang Y, Liu J, Tang X,Wang Y, An H and Yi H 2023 Resour. Conserv. Recycl. 194 106994 [6] Wei W and Yu X 2020 Mater. Today Commun. 24 101217 [7] Lin F, Wang L, Li Z, Yin L, Wu J, Zheng D, Bao M, Liu P, Zhai H and Shu K 2025 Int. J. Fatigue 193 108760 [8] Mussa A, Krakhmalev P and Bergström J 2020 Wear 444-445 203119 [9] Xie H, Ma T, Yu T and Yin F 2021 Mater. Today Commun. 26 101961 [10] Zhang X, Deng Y, Chen J and Hu W 2021 Mater. Today Commun. 29 102893 [11] Germann T C, Kadau K, Lomdahl P S and Holian B L 2005 Phys. Rev. B 72 064120 [12] Hawreliak J, Colvin J D, Kalantar D H, et al. 2006 Phys. Rev. B 74 184107 [13] Kadau K, Germann T C, Lomdahl P S and Holian B L 2002 Science 296 1681 [14] Kadau K, Germann T C, Lomdahl P S and Holian B L 2002 AIP Conference Proceedings 620 351 [15] Peterson E L, Minshall S and Bancroft D 1956 J. Appl. Phys. 27 291 [16] Shockey D, Curran D and Carli P D 1975 J. Appl. Phys. 46 3766 [17] Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E and Eggert J H 2005 Phys. Rev. Lett. 95 075501 [18] Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E and Eggert J H 2005 Phys. Plasmas 12 92703 [19] Wang F M and Ingalls R 1998 Phys. Rev. B 57 5647 [20] Jiang L, Li M, Fu B Q, Cui J C and Hou Q 2024 Chin. Phys. B 33 036103 [21] Kanel’ G I, Dremin A N and Anan’in A V 1975 Combustion, Explosion, and Shock Waves 9 381 [22] Johnson P C, Stein B A and Davis R S 1962 J. Appl. Phys. 33 557 [23] Gluzman V D, Kanel’ G I, Loskutov V F, Fortov V E and Khorev I E 1985 Strength Mater-Engl. Tr. 17 1093 [24] Gunkelmann N, Bringa E M, Tramontina D R, Ruestes C J, Suggit M J, Higginbotham A, Wark J S and Urbassek H M 2014 Phys. Rev. B 89 140102 [25] Gunkelmann N, Tramontina D R, Bringa E M and Urbassek H M 2014 New J. Phys. 16 093032 [26] Wang K, ZhuW, Xiao S, Chen K, Deng H and Hu W 2015 Int. J. Plast. 71 218 [27] Wang K, Xiao S, Deng H, Zhu W and Hu W 2014 Int. J. Plast. 59 180 [28] Amadou N, Rességuier T D, Dragon A and Brambrink E 2018 Phys. Rev. B 98 024104 [29] Yu J, Shao J, Shu H, Huang X and Fu S 2024 Mater. Today Commun. 39 109291 [30] Jiang S, Huang Y, Wang K, Li X, Deng H, Xiao S, Zhu W and Hu W 2021 J. Appl. Phys. 130 015107 [31] Huang Y, Xiong Y, Li P, Li X, Xiao S, Deng H, Zhu W and Hu W 2019 Int. J. Plast. 114 215 [32] Zhang X, Chen J, Hu W, Zhu W, Xiao S, Deng H and Cai M 2019 J. Appl. Phys. 126 045901 [33] Zhang X, Wang K, Zhu W, Chen J, Cai M, Xiao S, Deng H and Hu W 2018 J. Appl. Phys. 123 045105 [34] Wu L, Wang K, Xiao S, Deng H, Zhu W and Hu W 2016 Comput. Mater. Sci. 122 1 [35] Zhang F,Dong J Q, Xie Z Y, He Z Y, Shu H,Wang R R, Xiong J, Jia G, Fang Z H, Wang W, Xiao D W, Lei A L, Chen J and Huang X G 2024 Chin. Phys. B 33 106101 [36] Cui X, Zhu W, He H, Deng X and Li Y 2008 Phys. Rev. B 78 024115 [37] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in ’t Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171 [38] Amadou N and Rességuier T D 2023 Phys. Rev. B 108 174109 [39] Urbassek H M, Ackland G J, Bringa E M, Gunkelmann N, Ruestes C J and Kang K 2012 Phys. Rev. B 86 144111 [40] Hoang-Thien Luu R J R, Martin Rudolph, Eduardo M Bringa, Timothy C Germann, David Rafaja, and Gunkelmann N 2020 Phys. Rev. B 102 020102 [41] Feng L, Zhang X, Li W, Xiang M and Yao X 2023 Int. J. Mech. Sci. 256 108536 [42] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012 [43] Wu D, Zhu Y, Zhao L, Huang M and Li Z 2021 J. Appl. Phys. 129 175110 [44] Chen P, Wang X, Wang P and He A M 2022 Int. J. Mech. Sci. 220 107122 [45] Zhu Y, Hu J, Wei Q, Zhang J, Sun Y, Luo G and Shen Q 2023 Mech. Mater. 186 104809 [46] Ma K and Dongare A M 2022 J. Mater. Sci. 57 12556 [47] Zhang W, Liu Z, Liu Z and Cai L 2015 Phys. Earth Planet. Inter. 244 69 [48] Alf D, egrave, Price G D and Gillan M J 2002 Phys. Rev. B 65 165118 [49] Bouchet J, Mazevet S, Morard G, Guyot F and Musella R 2013 Phys. Rev. B 87 094102 [50] Luo S N, Strachan A and Swift D C 2004 J. Chem. Phys. 120 11640 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|