Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 099901    DOI: 10.1088/1674-1056/adfebf
CORRIGENDUM Prev   Next  

Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition”

Jie Cheng(程杰)1,†, Rui-Zhao Li(李瑞昭)1, Cheng Cheng(程骋)2, Ya-Lin Zhang(张亚林)1, Sheng-Li Liu(刘胜利)1, and Peng Dong(董鹏)3,‡
1 School of Science, Jiangsu Province Engineering Research Center of Low Dimensional Physics and New Energy, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 School of Electrical Engineering, Research Center of Intelligent Sensor and Network Engineering Technology of Jiangsu Province, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
Abstract  Figure 6(a) in the paper [Chin. Phys. B 33 074203 (2024)] was incorrect due to editorial oversight. The correct figure is provided. This modification does not affect the result presented in the paper.
Keywords:  corrigendum      photonic spin Hall effect      multi-functional sensors      phase transition      sensing performance  
Received:  22 August 2025      Accepted manuscript online:  25 August 2025
PACS:  99.10.-x (Errata and other corrections)  
  42.40.My (Applications)  
  42.25.-p (Wave optics)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.79.-e (Optical elements, devices, and systems)  
Corresponding Authors:  Zian Li, Peng Dong     E-mail:  chengj@njupt.edu.cn;2021101298@niit.edu.cn

Cite this article: 

Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏) Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition” 2025 Chin. Phys. B 34 099901

[1] Cheng J, Li R Z, Cheng C, Zhang Y L, Liu S L and Dong P 2024 Chin. Phys. B 33 074203
[1] Corrigendum to “High-throughput discovery of kagome materials in transition metal oxide monolayers”
Renhong Wang(王人宏), Cong Wang(王聪), Ruixuan Li(李睿宣), Deping Guo(郭的坪), Jiaqi Dai(戴佳琦), Canbo Zong(宗灿波), Weihan Zhang(张伟涵), and Wei Ji(季威). Chin. Phys. B, 2025, 34(9): 099902.
[2] Graph neural networks unveil universal dynamics in directed percolation
Ji-Hui Han(韩继辉), Cheng-Yi Zhang(张程义), Gao-Gao Dong(董高高), Yue-Feng Shi(石月凤), Long-Feng Zhao(赵龙峰), and Yi-Jiang Zou(邹以江). Chin. Phys. B, 2025, 34(8): 080702.
[3] Quantum phase transitions with eigen microstate approach in one-dimensional transverse-field Ising model
Zhongshan Su(苏中山), Yuan Jiang(江源), Gaoke Hu(胡高科), Yue-Hua Su(苏跃华), Liangsheng Li(李粮生), Wen-Long You(尤文龙), Maoxin Liu(刘卯鑫), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2025, 34(8): 086401.
[4] Effect of interlayer interaction on magnon properties of vdW honeycomb heterostructures
Jun Shan(单俊), Lichuan Zhang(张礼川), Huasu Fu(付华宿), Yuee Xie(谢月娥), Yuriy Mokrousov, and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(8): 087501.
[5] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[6] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[7] Pressure distribution imaging through wide-field optical detected magnetic resonance
Chaofan Lv(吕超凡), Kai Ma(马凯), Feihu Lei(雷飞虎), Yidan Qu(屈怡丹), Qilong Wu(吴琦隆), Wuyou Zhang(张吾优), Yingjie Zhang(张英杰), Huihui Yu(余辉辉), Xuanming Shen(申炫铭), Yuan Zhang(张元), Xigui Yang(杨西贵), and Chongxin Shan(单崇新). Chin. Phys. B, 2025, 34(8): 087601.
[8] Role of symmetry in antiferromagnetic topological insulators
Sahar Ghasemi and Morad Ebrahimkhas. Chin. Phys. B, 2025, 34(7): 077302.
[9] Random flux manipulating topological phase transitions in Chern insulators
Jinkun Wang(王锦坤) and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2025, 34(6): 067301.
[10] Morphology-tuned phase transition of MnO2 nanorods under high pressure
Xue-Ting Zhang(张雪婷), Chen-Yi Li(李晨一), Hui Tian(田辉), Xin-Yue Wang(王心悦), Zong-Lun Li(李宗伦), and Quan-Jun Li(李全军). Chin. Phys. B, 2025, 34(6): 066105.
[11] Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure
Songyang Li(李松洋), Zhiguang Zhu(朱志光), Youzhi Zhang(张有志), Chengke Chen(陈成克), and Xiaojun Hu(胡晓君). Chin. Phys. B, 2025, 34(5): 058101.
[12] Irreversibility as a signature of non-equilibrium phase transition in large-scale human brain networks: An fMRI study
Jing Wang(王菁), Kejian Wu(吴克俭), Jiaqi Dong(董家奇), and Lianchun Yu(俞连春). Chin. Phys. B, 2025, 34(5): 058703.
[13] Strain rate effects on pressure-induced amorphous-to-amorphous transformation in fused silica
Wenhao Song(宋文豪), Bo Gan(甘波), Dongxiao Liu(刘东晓), Jie Wu(吴杰), Martin T. Dove, and Youjun Zhang(张友君). Chin. Phys. B, 2025, 34(4): 046101.
[14] Phase transition extracted by principal component analysis in the disordered Moore-Read state
Na Jiang(江娜), Shuaixin Fu(付帅鑫), Zhengzhi Ma(马正直), and Lian Wang(王莲). Chin. Phys. B, 2025, 34(4): 047306.
[15] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
No Suggested Reading articles found!