Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030204    DOI: 10.1088/1674-1056/acfaf9
GENERAL Prev   Next  

Quintessence anisotropic stellar models in quadratic and Born-Infeld modified teleparallel Rastall gravity

Allah Ditta1, Tiecheng Xia(夏铁成)1,†, Irfan Mahmood2, and Asif Mahmood3,‡
1 Department of Mathematics, Shanghai University and Newtouch Center for Mathematics of Shanghai University, Shanghai 200444, China;
2 Centre for High Energy Physics, University of the Punjab, Lahore, Pakistan;
3 College of Engineering, Chemical Engineering Department, King Saud University Riyadh, Saudi Arabia
Abstract  This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field, which describe compact stellar objects in the modified Rastall teleparallel theory of gravity. To achieve this goal, the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated. We explore the field equations by selecting appropriate off-diagonal tetrad fields. Born-Infeld function of torsion f(T)=βλT+1-1 and power law form h(T)=δTn are used. The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation. We use the linear equation of state pr=ξρ to separate the quintessence density. After obtaining the field equations, we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models. We use observational data, such as the mass and radius of the compact star candidates PSRJ 1416-2230, Cen X-3, & 4U 1820-30, to ensure the physical plausibility of our findings.
Keywords:  anisotropic spheres      quintessence field      modified Rastall teleparallel gravity      equation of state (EoS)      f(T) gravity  
Received:  02 August 2023      Revised:  31 August 2023      Accepted manuscript online:  19 September 2023
PACS:  02.30.Jr (Partial differential equations)  
Fund: Allah Ditta and Xia Tiecheng acknowledge this paper to be funded by the National Natural Science Foundation of China (Grant No. 11975145). Asif Mahmood would like to acknowledge Researchers Supporting Project Number (RSP2024R43), King Saud University, Riyadh, Saudi Arabia.
Corresponding Authors:  Tiecheng Xia, Asif Mahmood     E-mail:  xiatc@shu.edu.cn;ahayat@ksu.edu.sa

Cite this article: 

Allah Ditta, Tiecheng Xia(夏铁成), Irfan Mahmood, and Asif Mahmood Quintessence anisotropic stellar models in quadratic and Born-Infeld modified teleparallel Rastall gravity 2024 Chin. Phys. B 33 030204

[1] Riess A G, Filippenko A V, Challis P, et al. 1998 The Astronomical Journal 116 1009
[2] Aldrovandi R and Pereira J G 2012 Teleparallel gravity: an introduction, Vol. 173 (Springer Science & Business Media)
[3] Sotiriou T P and Faraoni V 2010 Rev. Mod. Phys. 82 451
[4] Bamba K, Capozziello S, Nojiri S and Odintsov S D 2012 Astrophysics and Space Science 342 155
[5] Einstein A 1925 Sitzungsber. Pruess. Akad. Wiss 414
[6] Capozziello S and De Laurentis M 2011 Physics Reports 509 167
[7] Faraoni V and Sotiriou T P 2010 Rev. Mod. Phys 82 451
[8] Nojiri S and Odintsov S 2007 Int. J. Geom. Meth. Mod. Phys 4 16
[9] Famaey B and McGaugh S 2012 arXiv preprint arXiv:1112.3960
[10] Clifton T, Ferreira P G, Padilla A and Skordis C 2012 Physics Reports 513 1
[11] Ferraro R and Fiorini F 2008 Phys. Rev. D 78 124019
[12] Fiorini F and Ferraro F 2009 International Journal of Modern Physics A 24 1686
[13] Li B, Sotiriou T P and Barrow J D 2011 Phys. Rev. D 83 064035
[14] Cardone V F, Radicella N and Camera S 2012 Phys. Rev. D 85 124007
[15] Rastall P 1972 Phys. Rev. D 6 3357
[16] Rastall P 1976 Canadian J. Phys. 54 66
[17] Moradpour H, Heydarzade Y, Darabi F and Salako I G 2017 Euro. Phys. J. C 77 1
[18] Lin K and Qian W L 2019 Chin. Phys. C 43 083106
[19] Saaidi K and Nazavari N 2020 Physics of the Dark Universe 28 100464
[20] Nazavari N, Saaidi K and Mohammadi A 2023 General Relativity and Gravitation 55 45
[21] Visser M 2018 Phys. Lett. B 782 83
[22] Darabi F, Atazadeh K and Heydarzade Y 2018 Euro. Phys. J. Plus 133 249
[23] Darabi F, Moradpour H, Licata I, Heydarzade Y and Corda C 2018 Euro. Phys. J. C 78 1
[24] Hansraj S, Banerjee A and Channuie P 2019 Annals of Physics 400 320
[25] Javed F, Mustafa G, Mumtaz S and Atamurotov F 2023 Nuclear Physics B 990 116180
[26] Javed F, Sadiq S, Mustafa G and Hussain I 2022 Physica Scripta 97 125010
[27] Javed F, Mumtaz S, Mustafa G, Hussain I and Liu W M 2022 Euro. Phys. J. C 82 825
[28] Mustafa G, Gao X and Javed F 2022 Fortschritte der Physik 70 2200053
[29] Maurya S, Errehymy A, Govender M, Mustafa G, Al-Harbi N and Abdel-Aty A H 2023 Euro. Phys. J. C 83 348
[30] Sharif M and Gul M Z 2023 General Relativity and Gravitation 55 10
[31] Kumar M and Kumar J 2023 Physica Scripta 98 035012
[32] Jeans J 1922 Mon. Not. R. Astron. Soc. 122
[33] Herrera L and Santos N O 1997 Physics Reports 286 53
[34] Mak M and Harko T 2002 Chinese Journal of Astronomy and Astrophysics 2 248
[35] Horvat D, Ilijić S and Marunović A 2010 Classical and Quantum Gravity 28 025009
[36] Dev K and Gleiser M 2003 arXiv preprint gr-qc/0303077
[37] Bowers R L and Liang E 1974 Astrophysical Journal 188 657
[38] Ruderman M 1972 Annual Review of Astronomy and Astrophysics 10 427
[39] Maurya S, Gupta Y, Ray S and Deb D 2017 Euro. Phys. J. C 77 1
[40] Zubair M, Ditta A and Waheed S 2021 Euro. Phys. J. Plus 136 508
[41] Zubair M, Ditta A and Waheed S 2022 New Astronomy 92 101735
[42] Ditta A, Tiecheng X, Errehymy A, Mustafa G and Maurya S 2023 Euro. Phys. J. C 83 254
[43] Ditta A, Errehymy A, Tiecheng X, Mustafa G, Alrebdi H and Abdel-Aty A H 2022 Euro. Phys. J. Plus 137 933
[44] Ditta A and Xia T 2022 Chin. J. Phys. 79 57
[45] Tamanini N and Boehmer C G 2012 Phys. Rev. D 86 044009
[46] Boehmer C G, Mussa A and Tamanini N 2011 Classical and Quantum Gravity 28 245020
[47] Ruggiero M L and Radicella N 2015 Phys. Rev. D 91 104014
[48] Bahamonde S, Flathmann K and Pfeifer C 2019 Phys. Rev. D 100 084064
[49] Hohmann M, Järv L, Krššák M and Pfeifer C 2019 Phys. Rev. D 100 084002
[50] Krššák M, Van Den Hoogen R, Pereira J, B" ohmer C and Coley A 2019 Classical and Quantum Gravity 36 183001
[51] Nashed G and Saridakis E N 2019 Classical and Quantum Gravity 36 135005
[52] Daouda M H, Rodrigues M E and Houndjo M 2012 Phys. Lett. B 715 241
[53] Jusufi K, Capozziello S, Bahamonde S and Jamil M 2022 Euro. Phys. J. C 82 1018
[54] Zubair M and Abbas G 2016 Astrophysics and Space Science 361 27
[55] Krori K and Barua J 1975 J. Phys. A: Math. Gen. 8 508
[56] Biswas S, Deb D, Ray S and Guha B 2021 Annals of Physics 428 168429
[57] Zubair M, Ditta A, Abbas G and Saleem R 2021 Chin. Phys. C 45 085102
[58] Rahaman F, Sharma R, Ray S, Maulick R and Karar I 2012 Euro. Phys. J. C 72 1
[59] Roupas Z and Nashed G G 2020 Euro. Phys. J. C 80 1
[60] Nojiri S and Odintsov S G 2009 Phys. Lett. B 676 94
[61] Sharif M and Javed F 2019 Chin. J. Phys. 61 262
[62] Thirukkanesh S and Maharaj S 2008 Classical and Quantum Gravity 25 235001
[63] Singh K N, Govender M, Hansraj S and Rahaman F 2022 Annalen der Physik 534 2100596
[64] Abbas G, Momeni D, Aamir Ali M, Myrzakulov R and Qaisar S 2015 Astrophysics and Space Science 357 1
[65] Bhar P 2014 Astrophysics and Space Science 354 457
[66] Goswami R, Nzioki A M, Maharaj S D and Ghosh S G 2014 Phys. Rev. D 90 084011
[67] Kiselev V 2003 Classical and Quantum Gravity 20 1187
[68] Toledo J D M and Bezerra V 2018 Euro. Phys. J. C 78 1
[69] Tolman R C 1939 Phys. Rev. 55 364
[70] Oppenheimer J R and Volkoff G M 1939 Phys. Rev. 55 374
[71] Abreu H, Hernández H and Núnez L A 2007 Classical and Quantum Gravity 24 4631
[72] Andréasson H 2008 Journal of Differential Equations 245 2243
[73] Buchdahl H A 1959 Phys. Rev. 116 1027
[1] Observational constraints on the accelerating universe in the framework of a 5D bounce cosmological model
Lü Jian-Bo(吕剑波), Xu Li-Xin(徐立昕), Liu Mo-Lin(刘墨林), and Gui Yuan-Xing(桂元星). Chin. Phys. B, 2009, 18(4): 1711-1720.
No Suggested Reading articles found!