Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 063401    DOI: 10.1088/1674-1056/ad3348
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Entropy of deterministic trajectory via trajectories ensemble

Yonggang Peng(彭勇刚)†, Cuiping Ran(冉翠平), and Yujun Zheng(郑雨军)‡
School of Physics, Shandong University, Jinan 250100, China
Abstract  We present a formulation of the single-trajectory entropy using the trajectories ensemble. The single-trajectory entropy is affected by its surrounding trajectories via the distribution function. The single-trajectory entropies are studied in two typical potentials, i.e., harmonic potential and double-well potential, and in viscous environment by interacting trajectory method. The results of the trajectory methods are in agreement well with the numerical methods (Monte Carlo simulation and difference equation). The single-trajectory entropies increasing (decreasing) could be caused by absorption (emission) heat from (to) the thermal environment. Also, some interesting trajectories, which correspond to the rare evens in the processes, are demonstrated.
Keywords:  trajectory entropy      trajectories ensemble  
Received:  03 January 2024      Revised:  06 March 2024      Accepted manuscript online:  13 March 2024
PACS:  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12234013) and the Natural Science Foundation of Shandong Province (Grant No. ZR2021LLZ009).
Corresponding Authors:  Yonggang Peng, Yujun Zheng     E-mail:  ygpeng@sdu.edu.cn;yzheng@sdu.edu.cn

Cite this article: 

Yonggang Peng(彭勇刚), Cuiping Ran(冉翠平), and Yujun Zheng(郑雨军) Entropy of deterministic trajectory via trajectories ensemble 2024 Chin. Phys. B 33 063401

[1] Lemons D S 2013 A Student’s Guide to Entropy (Cambridge: Cambridge University Press)
[2] Attard P 2002 Thermodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation (Cornwa: Academic Press)
[3] Sachs I, Sen S and Sexton J 2006 Elements of Statistical Mechanics (Cambridge: Cambridge University Press)
[4] Wehrl A 1978 Rev. Mod. Phys. 50 221
[5] Huang K 1987 Statistical Mechanics 2nd Edn. (New York: Wiley)
[6] Chandler D 1987 Introduction to Modern Statistical Mechanics (Oxford: Oxford University Press)
[7] Gibbs J W 1960 Elementary Principles in Statistical Mechanics (New York: Dover Publications)
[8] Jaynes E T 1965 Am. J. Phys. 33 391
[9] Zupanovic P and Kuic D 2018 J. Phys. Commun. 2 045002
[10] Shannon C E 1948 Bell System Tech. J. 27 379
[11] von Neumann J 1955 The Mathematical Foundations of Quantum Mechanics (Princeton: Princeton University Press)
[12] Haas K R, Yang H and Chu J W 2014 J. Phys. Chem. B 118 8099
[13] Haas K R, Yang H and Chu J W 2014 J. Phys. Chem. Lett. 5 999
[14] Weiderpass G A and Caldeira A O 2020 Phys. Rev. E 102 032102
[15] Rossi M, Mancino L, Landi G T and Paternostro M 2020 Phys. Rev. Lett. 125 080601
[16] Klages R, Just W and Jarzynski C (eds) 2013 Nonequilibrium Statistical Physics of Small Systems (Weinheim: Wiley-VCH Verlag)
[17] Holian B L 1986 Phys. Rev. A 33 1152
[18] Grandy and Jr W T 2008 Entropy and the Time Evolution of Macroscopic Systems (New York: Oxford University Press)
[19] Kleidon A and Lorenz R D (eds) 2005 Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond (Berlin: Springer-Verlag)
[20] Seifert U 2012 Rep. Prog. Phys. 75 126001
[21] Sekimoto K 1998 Prog. Theor. Phys. Suppl. 130 17
[22] Evans D J, Cohen E G D and Morriss G P 1993 Phys. Rev. Lett. 71 2401
[23] Evans D J and Searles D J 1994 Phys. Rev. E 50 1645
[24] Gallavotti G and Cohen E G D 1995 Phys. Rev. Lett. 74 2694
[25] Seifert U 2005 Europhys. Lett. 70 36
[26] Kurchan J 1998 J. Phys. A: Math. Gen. 31 3719
[27] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[28] Crooks G E 1999 Phys. Rev. E 60 2721
[29] Hatano T and Sasa S i 2001 Phys. Rev. Lett. 86 3463
[30] Qian M 1985 Chin. Sci. Bull. 30 165 (in Chinese)
[31] Seifert U 2005 Phys. Rev. Lett. 95 040602
[32] Tietz C, Schuler S, Speck T, Seifert U and Wrachtrup J 2006 Phys. Rev. Lett. 97 050602
[33] Mandal D, Klymko K and DeWeese M R 2017 Phys. Rev. Lett. 119 258001
[34] Bunker D L 1971 Methods Comput. Physics: Adv. Res. Appl. 10 287
[35] Sanz A S and Miret-Artes S 2012 A Trajectory Description of Quantum Processes (Berlin: Springer)
[36] Chattaraj P K (ed) 2010 Quantum Trajectories (Boca Raton: CRC Press)
[37] Wyatt R E and Trahan C J 2005 Quantum Dynamics with Trajectories (Berlin: Springer)
[38] Donoso A and Martens C C 2001 Phys. Rev. Lett. 87 223202
[39] Donoso A and Martens C C 2002 J. Chem. Phys. 116 10598
[40] Sun Z, Dong H and Zheng Y 2018 Phys. Rev. E 97 012132
[41] Xu F, Martens C C and Zheng Y 2017 Phys. Rev. A 96 022138
[42] Wang L, Martens C C and Zheng Y 2012 J. Chem. Phys. 137 034113
[43] Attard P 2012 Non-Equilibrium Thermodynamics and Statistical Mechanics (Oxford: Oxford University Press)
[44] Brewster R A and Frason J D 2018 J. Math. Phys. 59 012102
[45] Wand M P and Jones M C 1995 Kernel Smoothing (New York: Springer)
[46] Silverman B W 1998 Density Estimation for Statistics and Data Analysis (New York: Chapman & Hall)
[47] Kramers H A 1940 Physica 7 284
[48] Kubo R, TodaMand hashitsume N 1985 Statistical Physics II: Nonequilibrium Statistical Mechanics (Berlin: Springer-Verlag)
[49] Gardiner C W 2004 Handbook of Stochastic Methods 3rd Edn. (Berlin: Springer-Verlag)
[50] van Kampen N G 2007 Stochastic Processes in Physics and Chemistry 3rd edn (Singapore: Elsevier)
[51] Risken H 1996 The Fokker-Planck Equation 2nd Edn. (Berlin: Springer-Verlag)
[52] Jacobs K 2010 Stochastic Processes for Physicists - Understanding Noisy Systems (Cambridge: Cambridge University Press)
[1] Fragmentation dynamics of electron-impact double ionization of helium
Shiwei Liu(刘士炜), Difa Ye(叶地发), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(6): 063402.
[2] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[3] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[4] Modification of short-range repulsive interactions in ReaxFF reactive force field for Fe-Ni-Al alloy
Huaqiang Chen(陈华强), Lin Lang(稂林), Shuaiyu Yi(易帅玉), Jinlong Du(杜进隆), Guangdong Liu(刘广东), Lixia Liu(刘丽霞), Yufei Wang(王宇飞), Yuehui Wang(王悦辉), Huiqiu Deng(邓辉球), and Engang Fu(付恩刚). Chin. Phys. B, 2021, 30(8): 086110.
[5] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[6] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[7] Exploring the methane combustion reaction: A theoretical contribution
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2018, 27(2): 023401.
[8] Helium nano-bubble bursting near the nickel surface
Heng-Feng Gong(龚恒风), Min Liu(刘敏), Fei Gao(高飞), Rui Li(李锐), Yan Yan(严岩), Heng Huang(黄恒), Tong Liu(刘彤), Qi-Sen Ren(任啟森). Chin. Phys. B, 2017, 26(11): 113401.
[9] Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe
Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(2): 023201.
[10] Optical potential approach for positron scattering by metastable 23S state of helium
Xi-Gang Wu(吴锡刚), Yong-Jun Cheng(程勇军), Fang Liu(刘芳), Ya-Jun Zhou(周雅君). Chin. Phys. B, 2017, 26(2): 023401.
[11] Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function
Lin Chen(陈林), Wen-Bin Wu(武文斌), Pin-Yang Liu(刘品阳), Yun-Qing Xiao(肖云青), Guo-Peng Li(李国朋), Yi-Ran Liu(刘亦然), Hao-Yu Jiang(江浩雨), Yan-Ling Guo(郭艳玲), Xi-Meng Chen(陈熙萌). Chin. Phys. B, 2016, 25(8): 083401.
[12] Resonant charge transfer in slow Li+-Li(2s) collisions
Li Tie-Cheng (李铁成), Liu Chun-Hua (刘春华), Qu Yi-Zhi (屈一至), Liu Ling (刘玲), Wu Yong (吴勇), Wang Jian-Guo (王建国), Liebermann H. P., Buenker R. J.. Chin. Phys. B, 2015, 24(10): 103401.
[13] Theoretical study on photorecombination of C V ion
Ma Kun (马堃), Xie Lu-You (颉录有), Zhang Deng-Hong (张登红), Dong Chen-Zhong (董晨钟). Chin. Phys. B, 2015, 24(7): 073402.
[14] Two-photon spectrum of 87Rb using optical frequency comb
Wang Li-Rong (汪丽蓉), Zhang Yi-Chi (张一驰), Xiang Shao-Shan (向少山), Cao Shu-Kai (曹书凯), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(6): 063201.
[15] Measurement of 129Xe frequency shift due to Cs-129Xe collisions
Fang Jian-Cheng (房建成), Wan Shuang-Ai (万双爱), Chen Yao (陈瑶). Chin. Phys. B, 2014, 23(6): 063401.
No Suggested Reading articles found!