| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
TaS2-based saturable absorbers for Q-switched fiber laser applications |
| Qinghua Wang(汪情华)1, Hao Sun(孙昊)1,2,3,†, Chenhao Lu(鲁晨浩)4, Huiran Yang(杨慧苒)4, and Lu Li(李璐)4,‡ |
1 School of Material Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; 2 Inner Mongolia Key Laboratory of New Metal Material, Baotou 014010, China; 3 Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources, Ministry of Education, Baotou 014010, China; 4 School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China |
|
|
|
|
Abstract Transition metal disulfides are widely applied as nonlinear optical materials for laser pulse generation. In this paper, TaS$_{2}$ is successfully used for the first time to achieve a high-energy passively $Q$-switched erbium-doped fiber (EDF) laser. TaS$_{2}$ nanosheets are prepared by the liquid phase exfoliation method, and then the TaS$_{2}$ solution is mixed with polyvinyl alcohol (PVA). TaS$_{2}$/PVA film is prepared, which is cut into $\rm 1 mm \times 1 mm$ flakes. TaS$_{2}$/PVA saturable absorber (SA) is obtained by sandwiching a small flake between two fiber optic patch cable connectors. With the TaS$_{2}$/PVA SA added to an EDF laser, a $Q$-switched fiber laser with a center wavelength of 1560 nm and a repetition rate ranging from 51.33 kHz to 83.04 kHz is realized. At the pump power of 231 mW, the maximum output power is 1094 μW, and the shortest pulse duration is 3.48 μs. The results confirm that the TaS$_{2}$ material has excellent potential for application in nonlinear optics.
|
Received: 21 April 2025
Revised: 07 May 2025
Accepted manuscript online: 26 May 2025
|
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
| |
42.70.Gi
|
(Light-sensitive materials)
|
| |
42.70.-a
|
(Optical materials)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075190) and the Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 23JSY019). |
Corresponding Authors:
Hao Sun, Lu Li
E-mail: sunhao2580@163.com;liluyoudian@xupt.edu.cn
|
Cite this article:
Qinghua Wang(汪情华), Hao Sun(孙昊), Chenhao Lu(鲁晨浩), Huiran Yang(杨慧苒), and Lu Li(李璐) TaS2-based saturable absorbers for Q-switched fiber laser applications 2025 Chin. Phys. B 34 074209
|
[1] Lin H Y, Chuang Y J and Lin P J 2005 Sci. Rep. 11 9525 [2] Vrijman C, Van Drooge A, Limpens J, Bos J, Van Der Veen J, Spuls P and Wolkerstorfer A J 2011 Br. J. Dermatol. 165 934 [3] Tabata N, Yagi S and Hishii M J 1996 Mater. Process. Technol. 62 309 [4] Chen X, Lotshaw W, Ortiz A, Staver P, Erikson C, McLaughlin M and Rockstroh T 1996 J. Laser Appl. 8 233 [5] Jia X, Zhang Y, Chen Y, Wang H, Zhu G and Zhu X 2019 Int. J. Adv. Manuf. Technol. 104 1269 [6] Puttnam B J, Rademacher G and Luís R S 2021 Optica 8 1186 [7] Shen J P, Chen Y, Chen L, Xing F Y, Zhang F B, Xia R Z, Zuo H Y, Xiong F and Jiang R R 2025 Chin. Phys. Lett. 42 044202 [8] Bruder F K, Hagen R, Rölle T, Weiser M S and Fäcke T 2011 Angew. Chem. Int. Ed. 50 4552 [9] Partovi A, Peale D, Wuttig M, Murray C A, Zydzik G, Hopkins L, Baldwin K, Hobson W S, Wynn J and Lopata J 1999 Appl. Phys. Lett. 75 1515 [10] Shen J, Xu S, Jiang R, Wang W, Zhang S, Xing F, Chen Y and Chen L 2024 Chin. Phys. Lett. 41 034201 [11] Li H, Liu H, Yang Y, Lu R and Chen X 2022 Chin. Phys. Lett. 39 034201 [12] Zhang M, Chi Z, Wang G, Fan Z, Wu H, Yang P, Yang J, Yan P and Sun Z 2022 Adv. Mater. 34 2205679 [13] Drobczyński S and Dus-szachniewicz K 2016 J. Opt. Soc. Am. B 34 38 [14] Chen X, Liu T, ZhangW, Guo D and Zhu H 2024 Microw. Opt. Technol. Lett. 66 e33880 [15] Guo B, Xiao Q L, Wang S H and Zhang H 2019 Laser Photon. Rev. 13 1800327 [16] Sakata H, Takahashi N and Ushiro Y 2018 Appl. Phys. B 124 1 [17] Shang Z, Wang G, Li J, Huang Q, Sun J, Cheng R, Zhang M, Yang J, Zhang Z and Yin J 2023 Opt. Lett. 48 2768 [18] Yang H, Qi M, Li X, Xue Z, Cheng J, Lu C, Han D, Li L, Zhang Y and Zhao F 2023 Opt. Express 31 38688 [19] Pang L, Jiang L, Zhao M, Zhang J, Zhao Q, Li L, Wu R, Lv Y and Liu W J 2025 J. Mater. Sci. Technol. 223 208 [20] Li L, Pang L H, Wang R, Zhang X, Hui Z, Han D, Zhao F and Liu W J 2022 Laser Photon. Rev. 16 2100255 [21] Li L, Cheng JW, Zhao Q Y, Zhang J N, Yang H, Zhang Y, Hui Z, Zhao F and Liu W J 2023 Opt. Express 31 16872 [22] Wang G, Sheng Q, Tang S, Li Q, Xiong S, Lu C, Bai C, Zhang W, Zhang H and Fu S 2023 Opt. Express 31 26145 [23] Shang X, Xu N, Guo J, Sun S, Zhang H, Wageh S, Al-Ghamdi A A, Zhang H and Li D 2023 Sci. China Phys. Mech. Astron. 66 254211 [24] Li L, Lv R, Liu S, Wang X, Wang Y, Chen Z and Wang J 2018 Laser Phys. 28 055106 [25] Mao D,Wang H Q, Zhang H Z, Zeng C, Du Y Q, He ZW, Sun Z P and Zhao J L 2021 Nat. Commun. 12 6712 [26] Yang H R, Qi M T, Li X P, Xue Z, Lu C H, Cheng J W, Han D D and Li L 2024 Chin. Phys. Lett. 41 014202 [27] Si Z Z, Dai C Q and Liu W J 2024 Chin. Phys. Lett. 41 020502 [28] Li L, Xue Z, Pang L H, Xiao X S, Yang H R, Zhang J N, Zhang Y M, Zhao Q Y and Liu W J 2024 Opt. Lett. 49 1293 [29] Xiao Y J, Xing X W, Cui W W, Chen Y Q, Zhou Q and Liu W J 2023 Chin. Phys. Lett. 40 054201 [30] Wang H Y, Xiao Y J, Liu Q, Xing X W, Yang H J and Liu W J 2023 Chin. Phys. Lett. 40 114204 [31] Meng X C, Li L, Sun N Z, Xue Z, Liu Q, Ye H and LiuWJ 2023 Chin. Phys. Lett. 40 124202 [32] Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y, Mei L and Wang J 2014 Adv. Mater. 26 3538 [33] Liu H, Luo A P, Wang F Z, Tang R, Liu M, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Lett. 39 4591 [34] Chen X, Zhang Z, Ding Z, Liu J and Wang L 2016 Angew. Chem. 128 10532 [35] Aguey-Zinsou F, Guo Z, Ng Y H and Wang D W 2018 Chempluschem 83 890 [36] Wang H,WangW, Zhong Y, Li D, Li Z, Xu X, Song X, Chen Y, Huang P and Mei A 2022 Adv. Mater. 34 2206122 [37] Pang L, Li L, Liu W, Wu R and Lv Y 2020 Opt. Mater. 102 109784 [38] Bendenia C, Merad-Dib H, Bendenia S and Hadri B 2018 Optik 174 167 [39] Yang H, Li X, Han D, Zhao Q, Li L, Gong Y and Zhao F 2022 Opt. Laser Technol. 149 107895 [40] Ahmad H, Tiu Z C and Ooi S I 2018 Chin. Opt. Lett. 16 020009 [41] Zhou D P, Wei L, Dong B and Liu W K 2009 IEEE Photon. Technol. Lett. 22 9 [42] Chen Y, Zhao C, Huang H, Chen S, Tang P, Wang Z, Lu S, Zhang H, Wen S and Tang D 2013 J. Lightwave Technol. 31 2857 [43] Ahmad H, Azmy N F, Yusoff N, Reduan S A, Aidit S N, Bayang L and Samion M Z 2021 Optik 243 167157 [44] Samsamnun F S, Zulkipli N F, Sarjidan M, Harun S W, Majid W, Khudus M I M A, Shuhaimi A, Rosol A H A, Rusdi M and Jafry A A A 2020 Opt. Fiber Technol. 54 102073 [45] Luo Z, Zhou M, Weng J, Huang G, Xu H, Ye C and Cai Z 2010 Opt. Lett. 35 3709 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|