Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 074208    DOI: 10.1088/1674-1056/adcdee
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Giant-tunable bidirectional Goos-Hänchen shifts via phase change material-based metasurfaces with quasi-bound states in continuum

Jiaqing Liu(刘佳晴)1, Yue Zheng(郑悦)1, Xiao Li(李潇)2,3, Jingwen Li(李静文)2,3, Guohao Zhang(张国昊)2,3, Daxing Dong(董大兴)2,3, Dongmei Liu(刘冬梅)1, Yuwen Jia(贾玉雯)1, Yangyang Fu(伏洋洋)2,3,†, and Youwen Liu(刘友文)2,3,‡
1 College of Science, North China University of Science and Technology, Tangshan 063210, China;
2 College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
3 Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
Abstract  We propose a novel approach for investigating the tunable Goos-Hänchen (GH) shift via an all-dielectric metasurface that incorporates phase change materials (PCMs). By introducing material asymmetry through the reconfigurable characteristic of PCMs while maintaining fixed geometric parameters, we can achieve tunable dual quasi-bound states in the continuum with ultrahigh quality factors (Q factors). Enabled by such tunable dual modes with significant phase changes, the PCM-based metasurface exhibits giant-tunable bidirectional GH shifts compared to conventional metasurfaces. Notably, the GH shift exhibits multidimensional tunability, including PCM-driven switching (amorphous to crystalline), incident-angle dependence (${\theta}$), and wavelength selectivity (${\lambda}$). The maximum observed shift reaches approximately 10$^{4}$ wavelengths, accompanied by a corresponding Q factor of 10$^{7}$. Our work demonstrates its potential for applications in ultrahigh-precision multifunctional devices, from biosensing to reconfigurable nanophotonic switches.
Keywords:  phase change materials      Goos-Hänchen shift      quasi-bound states in the continuum      tunable metasurfaces  
Received:  17 February 2025      Revised:  12 April 2025      Accepted manuscript online:  17 April 2025
PACS:  42.70.-a (Optical materials)  
  42.79.Dj (Gratings)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274225), the Fundamental Research Funds for the Central Universities (Grant No. NS2023056), the Natural Science Foundation of Hebei Province, China (Grant No. B2024209014), and the Basic Scientific Research Project of Hebei Provincial Department of Education (Grant No. JJC2024059).
Corresponding Authors:  Yangyang Fu, Youwen Liu     E-mail:  yyfu@nuaa.edu.cn;ywliu@nuaa.edu.cn

Cite this article: 

Jiaqing Liu(刘佳晴), Yue Zheng(郑悦), Xiao Li(李潇), Jingwen Li(李静文), Guohao Zhang(张国昊), Daxing Dong(董大兴), Dongmei Liu(刘冬梅), Yuwen Jia(贾玉雯), Yangyang Fu(伏洋洋), and Youwen Liu(刘友文) Giant-tunable bidirectional Goos-Hänchen shifts via phase change material-based metasurfaces with quasi-bound states in continuum 2025 Chin. Phys. B 34 074208

[1] Goos F and Hänchen H 1947 Annalen der Physik 436 333
[2] Tamir T and Oliner A A 1963 Proc. IEEE 51 317
[3] Wang X, Yin C, Sun J, Li H, Wang Y, Ran M and Cao Z 2013 Opt. Express 21 13380
[4] Wang X, Sang M, YuanW, Nie Y and Luo H 2015 IEEE Photon. Technol. Lett. 28 264
[5] Sattari H, Ebadollahi-Bakhtevar S and Sahrai M 2016 J. Appl. Phys 120 133102
[6] Tsakmakidis K L, Boardman A D and Hess O 2007 Nature 450 397
[7] Yang R, Zhu W and Li J 2015 Opt. Express 23 6326
[8] Huang T Y and Yen T J 2019 Sci. Rep. 9 3538
[9] Lai H and Chan S 2002 Opt. Lett. 27 680
[10] Huang Y, Dong W, Gao L and Qiu C 2011 Opt. Express 19 1310
[11] Kaiser R, Levy Y, Fleming J, Muniz S and Bagnato V S 1996 Pure and Applied Optics: Journal of the European Optical Society Part A 5 891
[12] Zheng Z, Zhu Y, Duan J, Qin M, Wu F and Xiao S 2021 Opt. Express 29 29541
[13] Chen J J, Grzegorczyk T M, Wu B I and Kong J A 2005 J. Appl. Phys. 98 094905
[14] Wang Z, Wang C and Zhang Z 2008 Opt. Commun. 281 3019
[15] Pan T, Xu G, Zang T and Gao L 2009 Physica Status Solidi (b) 246 1088
[16] Wan Y, Zheng Z, Kong W, Zhao X, Liu Y, Bian Y and Liu J 2012 Opt. Express 20 8998
[17] Li J S, Wu J F and Zhang L 2014 IEEE Photon. J. 6 1
[18] Chen Y, Ban Y, Zhu Q B and Chen X 2016 Opt. Lett. 41 4468
[19] Farmani A, Miri M and Sheikhi M H 2017 Opt. Commun. 391 68
[20] Xue T, Li Y B, Song H Y, Wang X G, Zhang Q, Fu S F, Zhou S and Wang X Z 2023 Chin. Phys. B 33 014207
[21] Xu Y, Chan C T and Chen H 2015 Sci. Rep. 5 8681
[22] Wen J, Zhang J, Wang L G and Zhu S Y 2017 JOSA B 34 2310
[23] Wu F,Wu J, Guo Z, Jiang H, Sun Y, Li Y, Ren J and Chen H 2019 Phys. Rev. Appl. 12 014028
[24] Wu F, Luo M,Wu J, Fan C, Qi X, Jian Y, Liu D, Xiao S, Chen G, Jiang H, et al. 2021 Phys. Rev. A 104 023518
[25] Zhang J, Ruan Y, Hu Z D,Wu J andWang J 2023 IEEE Sensors Journal 23 2070
[26] Ruan Y, Hu Z D, Wang J, Yu L and Wang Y 2022 IEEE Photon. J. 14 1
[27] Cong L and Singh R 2019 Adv. Opt. Mater. 7 1900383
[28] Shi W, Gu J, Zhang X, Xu Q, Han J, Yang Q, Cong L and Zhang W 2022 Photon. Res. 10 810
[29] Liao Z, Ma Q, Wang L, Yang Z, Li M, Deng F and Hong W 2022 Opt. Express 30 24676
[30] Jiang X, Fang B and Zhan C 2024 Chin. Phys. B 33 034206
[31] Liu J, Chen C, Li X, Li J, Dong D, Liu Y and Fu Y 2023 Opt. Express 31 4347
[32] Delaney M, Zeimpekis I, Lawson D, Hewak D W and Muskens O L 2020 Adv. Func. Mater. 30 2002447
[33] Chen L, Hao Y, Zhao L, Wu R, Liu Y, Wei Z, Xu N, Li Z and Liu H 2021 Opt. Express 29 9332
[34] Hu H, Lu W, Antonov A, Berté R, Maier S A and Tittl A 2024 Nat. Commun. 15 7050
[1] Large spatial shifts of reflected light beam off biaxial hyperbolic materials
Jia-Guo Shen(沈加国), Syed-ul-hasnain Bakhtiar(哈思内恩), Hao-Yuan Song(宋浩元), Sheng Zhou(周胜), Shu-Fang Fu(付淑芳), Xuan-Zhang Wang(王选章), Xuan Wang(王暄), and Qiang Zhang(张强). Chin. Phys. B, 2023, 32(11): 114206.
[2] Active control of surface plasmon polaritons with phase change materials
Yuan-Zhen Qi(漆元臻), Qiao Jiang(蒋瞧), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(10): 104202.
[3] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[4] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[5] Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN
Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Yu-Qi Zhang(张玉琦), Xiang-Guang Wang(王相光),Shu-Fang Fu(付淑芳), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2022, 31(6): 064207.
[6] High-efficiency reflection phase tunable metasurface at near-infrared frequencies
Ce Li(李策), Wei Zhu(朱维), Shuo Du(杜硕), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2021, 30(5): 057802.
[7] Crystal structure and thermochemical properties of phase change materials bis(1-octylammonium) tetrachlorochromate
Lu Dong-Fei (卢冬飞), Di You-Ying (邸友莹), He Dong-Hua (何东华 ). Chin. Phys. B, 2012, 21(8): 080702.
No Suggested Reading articles found!