| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Giant-tunable bidirectional Goos-Hänchen shifts via phase change material-based metasurfaces with quasi-bound states in continuum |
| Jiaqing Liu(刘佳晴)1, Yue Zheng(郑悦)1, Xiao Li(李潇)2,3, Jingwen Li(李静文)2,3, Guohao Zhang(张国昊)2,3, Daxing Dong(董大兴)2,3, Dongmei Liu(刘冬梅)1, Yuwen Jia(贾玉雯)1, Yangyang Fu(伏洋洋)2,3,†, and Youwen Liu(刘友文)2,3,‡ |
1 College of Science, North China University of Science and Technology, Tangshan 063210, China; 2 College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; 3 Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China |
|
|
|
|
Abstract We propose a novel approach for investigating the tunable Goos-Hänchen (GH) shift via an all-dielectric metasurface that incorporates phase change materials (PCMs). By introducing material asymmetry through the reconfigurable characteristic of PCMs while maintaining fixed geometric parameters, we can achieve tunable dual quasi-bound states in the continuum with ultrahigh quality factors (Q factors). Enabled by such tunable dual modes with significant phase changes, the PCM-based metasurface exhibits giant-tunable bidirectional GH shifts compared to conventional metasurfaces. Notably, the GH shift exhibits multidimensional tunability, including PCM-driven switching (amorphous to crystalline), incident-angle dependence (${\theta}$), and wavelength selectivity (${\lambda}$). The maximum observed shift reaches approximately 10$^{4}$ wavelengths, accompanied by a corresponding Q factor of 10$^{7}$. Our work demonstrates its potential for applications in ultrahigh-precision multifunctional devices, from biosensing to reconfigurable nanophotonic switches.
|
Received: 17 February 2025
Revised: 12 April 2025
Accepted manuscript online: 17 April 2025
|
|
PACS:
|
42.70.-a
|
(Optical materials)
|
| |
42.79.Dj
|
(Gratings)
|
| |
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
| |
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274225), the Fundamental Research Funds for the Central Universities (Grant No. NS2023056), the Natural Science Foundation of Hebei Province, China (Grant No. B2024209014), and the Basic Scientific Research Project of Hebei Provincial Department of Education (Grant No. JJC2024059). |
Corresponding Authors:
Yangyang Fu, Youwen Liu
E-mail: yyfu@nuaa.edu.cn;ywliu@nuaa.edu.cn
|
Cite this article:
Jiaqing Liu(刘佳晴), Yue Zheng(郑悦), Xiao Li(李潇), Jingwen Li(李静文), Guohao Zhang(张国昊), Daxing Dong(董大兴), Dongmei Liu(刘冬梅), Yuwen Jia(贾玉雯), Yangyang Fu(伏洋洋), and Youwen Liu(刘友文) Giant-tunable bidirectional Goos-Hänchen shifts via phase change material-based metasurfaces with quasi-bound states in continuum 2025 Chin. Phys. B 34 074208
|
[1] Goos F and Hänchen H 1947 Annalen der Physik 436 333 [2] Tamir T and Oliner A A 1963 Proc. IEEE 51 317 [3] Wang X, Yin C, Sun J, Li H, Wang Y, Ran M and Cao Z 2013 Opt. Express 21 13380 [4] Wang X, Sang M, YuanW, Nie Y and Luo H 2015 IEEE Photon. Technol. Lett. 28 264 [5] Sattari H, Ebadollahi-Bakhtevar S and Sahrai M 2016 J. Appl. Phys 120 133102 [6] Tsakmakidis K L, Boardman A D and Hess O 2007 Nature 450 397 [7] Yang R, Zhu W and Li J 2015 Opt. Express 23 6326 [8] Huang T Y and Yen T J 2019 Sci. Rep. 9 3538 [9] Lai H and Chan S 2002 Opt. Lett. 27 680 [10] Huang Y, Dong W, Gao L and Qiu C 2011 Opt. Express 19 1310 [11] Kaiser R, Levy Y, Fleming J, Muniz S and Bagnato V S 1996 Pure and Applied Optics: Journal of the European Optical Society Part A 5 891 [12] Zheng Z, Zhu Y, Duan J, Qin M, Wu F and Xiao S 2021 Opt. Express 29 29541 [13] Chen J J, Grzegorczyk T M, Wu B I and Kong J A 2005 J. Appl. Phys. 98 094905 [14] Wang Z, Wang C and Zhang Z 2008 Opt. Commun. 281 3019 [15] Pan T, Xu G, Zang T and Gao L 2009 Physica Status Solidi (b) 246 1088 [16] Wan Y, Zheng Z, Kong W, Zhao X, Liu Y, Bian Y and Liu J 2012 Opt. Express 20 8998 [17] Li J S, Wu J F and Zhang L 2014 IEEE Photon. J. 6 1 [18] Chen Y, Ban Y, Zhu Q B and Chen X 2016 Opt. Lett. 41 4468 [19] Farmani A, Miri M and Sheikhi M H 2017 Opt. Commun. 391 68 [20] Xue T, Li Y B, Song H Y, Wang X G, Zhang Q, Fu S F, Zhou S and Wang X Z 2023 Chin. Phys. B 33 014207 [21] Xu Y, Chan C T and Chen H 2015 Sci. Rep. 5 8681 [22] Wen J, Zhang J, Wang L G and Zhu S Y 2017 JOSA B 34 2310 [23] Wu F,Wu J, Guo Z, Jiang H, Sun Y, Li Y, Ren J and Chen H 2019 Phys. Rev. Appl. 12 014028 [24] Wu F, Luo M,Wu J, Fan C, Qi X, Jian Y, Liu D, Xiao S, Chen G, Jiang H, et al. 2021 Phys. Rev. A 104 023518 [25] Zhang J, Ruan Y, Hu Z D,Wu J andWang J 2023 IEEE Sensors Journal 23 2070 [26] Ruan Y, Hu Z D, Wang J, Yu L and Wang Y 2022 IEEE Photon. J. 14 1 [27] Cong L and Singh R 2019 Adv. Opt. Mater. 7 1900383 [28] Shi W, Gu J, Zhang X, Xu Q, Han J, Yang Q, Cong L and Zhang W 2022 Photon. Res. 10 810 [29] Liao Z, Ma Q, Wang L, Yang Z, Li M, Deng F and Hong W 2022 Opt. Express 30 24676 [30] Jiang X, Fang B and Zhan C 2024 Chin. Phys. B 33 034206 [31] Liu J, Chen C, Li X, Li J, Dong D, Liu Y and Fu Y 2023 Opt. Express 31 4347 [32] Delaney M, Zeimpekis I, Lawson D, Hewak D W and Muskens O L 2020 Adv. Func. Mater. 30 2002447 [33] Chen L, Hao Y, Zhao L, Wu R, Liu Y, Wei Z, Xu N, Li Z and Liu H 2021 Opt. Express 29 9332 [34] Hu H, Lu W, Antonov A, Berté R, Maier S A and Tittl A 2024 Nat. Commun. 15 7050 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|