Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 068201    DOI: 10.1088/1674-1056/adc085
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Al-Zr dual-doping enhancing the electrochemical performance of spinel LiMn2O4 cathodes

Wei Wu(吴伟)1, Yuhui Cui(崔煜辉)2, Yuxin Zheng(郑雨欣)1, Fei Huang(黄飞)1, Hong Li(李泓)1,2, and Liang Yin(尹良)1,2,†
1 Tianmu Lake Institute of Advanced Energy Storage Technologies Co., Ltd., Liyang 213300, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  LiMn2O4 (LMO) represents one of the most prevalent cathode materials utilized in lithium-ion batteries (LIBs), yet its broader application is often hampered by its limited achievable capacity and significant capacity degradation during cycling. In this work, a novel dual-doping strategy involving Al3+ and Zr4+ ions has been employed to refine the atomic structure of LMO's spinel framework. The resultant dual-doped material, Li1.06Mn1.97Zr0.01Al0.02O4, exhibits enhanced electrochemical properties, boasting a discharge capacity of 124.9 mAh/g at a rate of 0.1 C. Furthermore, the formation of stronger Al-O and Zr-O bonds contributes to the stabilization of the delithiated LMO structure. Impressively, 97.7% of its initial capacity is retained after 100 cycles at a 5 C rate. Additionally, enhancements in rate performance and high-temperature cycling stability have also been observed. This study underscores the potential of Al3+ and Zr4+ dual-doping as a promising approach to enhance LMO cathodes, providing a scalable and efficient means of improving the performance of lithium manganese oxide cathode materials through the incorporation of multiple ions.
Keywords:  Li-ion battery      cathode      LiMn2O4      dual-doping  
Received:  14 October 2024      Revised:  03 January 2025      Accepted manuscript online:  14 March 2025
PACS:  82.47.Aa (Lithium-ion batteries)  
  61.50.-f (Structure of bulk crystals)  
  61.66.Fn (Inorganic compounds)  
  82.45.Fk (Electrodes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB2404400).
Corresponding Authors:  Liang Yin     E-mail:  lyin@iphy.ac.cn

Cite this article: 

Wei Wu(吴伟), Yuhui Cui(崔煜辉), Yuxin Zheng(郑雨欣), Fei Huang(黄飞), Hong Li(李泓), and Liang Yin(尹良) Al-Zr dual-doping enhancing the electrochemical performance of spinel LiMn2O4 cathodes 2025 Chin. Phys. B 34 068201

[1] Yazdi A Z, Zhi J, Zhou M, Hoang T K A, Han M, Ma L, Zheng T, Li D and Chen P 2021 ACS Appl. Energy Mater. 4 7759
[2] Nakajima K, Souza F L, Freitas A L M, Thron A and Castro R H R 2021 Chem. Mater. 33 3915
[3] Yu X, Deng J, Yang X, Li J, Huang Z H, Li B and Kang F 2020 Nano Energy 67 104256
[4] Zhu C, Liu J, Yu X, Zhang Y, Dong P, Wang X and Zhang Y 2019 Ceram. Int. 45 19351
[5] Julien C M and Massot M 2003 J. Phys. Condens. Matter 15 3151
[6] Tesfamhret Y, Liu H, Chai Z, Berg E and Younesi R 2021 ChemElectroChem 8 1516
[7] Tan G, Wan S, Chen J, Yu H and Yu Y 2024 Adv. Mater. 36 2310657
[8] Zhang L X, Wang Y Z, Jiu H F, Wang Y L, Sun Y X and Li Z 2014 Electron. Mater. Lett. 10 439
[9] Xu W, Song C, Qi R, Zheng Y, Wu Y, Cheng Y, Peng H, Lin H and Huang R 2022 ACS Appl. Mater. Interfaces 14 55528
[10] Tomita Y, Asai K and Kobayashi K 1999 Chem. Lett. 28 1023
[11] Taddesse P, Gebrekiros H, Semu G, Duressa M, Chemeda Y C, Murali N and Babu K V 2021 Results Mater. 12 100224
[12] Gong J, Fu S, Zhang Y, Yan S, Lang Y, Guo J, Wang L and Liang G 2021 ChemistrySelect 6 7202
[13] Yang M, Liang Q, Guo Y, Guo J, Xiang M, Bai W and Liu X 2023 J. Energy Storage 72 108528
[14] Capsoni D, Bini M, Chiodelli G, Mustarelli P, Massarotti V, Azzoni C B, Mozzati M C and Linati L 2022 J. Phys. Chem. 106 7432
[15] Lu J, Zhan C, Wu T, Wen J, Lei Y, Kropf A J, Wu H, Miller D J, Elam J W, Sun Y K, Qiu X and Amine K 2014 Nat. Commun. 5 5693
[16] Kim S, Jo J, Lee O, Sambandam B, Mathew V, Alfaruqi M H, Kim S, Nam S, Han S and Kim J 2024 Energy Fuels 38 2404
[17] Tan G, Wan S, Chen J, Yu H and Yu Y 2024 Adv. Mater. 36 2310657
[18] XuW, Zheng Y, Cheng Y, Qi R, Peng H, Lin H and Huang R 2021 ACS Appl. Mater. Interfaces 13 45446
[19] Chen H, Hu Q, Huang Z, He Z, Wang Z, Guo H and Li X 2016 Ceram. Int. 42 263
[20] Ohzuku T, Takeda S and Iwanaga M 1999 J. Power Sources 81 90
[21] Julien C M and Massot M 2003 Mater. Sci. Eng. B 97 217
[22] Ammundsen B, Burns G R, Islam M S, Kanoh H and Rozi‘ere J 1999 J. Phys. Chem. B 103 5175
[23] Chen M, Chen P, Yang F, Song H and Liao S 2016 Electrochim. Acta 206 356
[24] Thirunakaran R, Sivashanmugam A, Gopukumar S and Rajalakshmi R 2009 J. Power Sources 187 565
[25] Wang S, Xiang M, Lu Y, Guo J, Su C, Bai H and Liu X 2020 J. Mater. Sci. Mater. Electron. 31 6036
[26] Tao Y, Liu Q, Guo Y, Xiang M, Liu X, Bai W, Guo J and Chou S 2022 J. Power Sources 524 231073
[27] Zhang S, Deng W, Momen R, Yin S, Chen J, Massoudi A, Zou G, Hou H, Deng W and Ji X 2021 J. Mater. Chem. A 9 21532
[28] Abou-Rjeily J, Bezza I, Laziz N A, Autret-Lambert C, Sougrati M T and Ghamouss F 2020 Energy Storage Mater. 26 423
[29] Thackeray M M and Amine K 2021 Nat. Energy 6 566
[30] Tao B, Yule L C, Daviddi E, Bentley C L and Unwin P R 2019 Angew. Chem. Int. Ed. 58 4606
[31] Park S H, Park K S, Sun Y K and Nahm K S 2000 J. Electrochem. Soc. 147 2116
[1] Deciphering the capacity degradation mechanism in lithium manganese oxide batteries
Lin Wang(王琳), Shijie Li(李世杰), Na Li(李娜), and Wei-Li Song(宋维力). Chin. Phys. B, 2025, 34(6): 066103.
[2] Synergistic bulk and surface engineering via rapid quenching for high-performance Li-rich layered manganese oxide cathodes
Xinyun Xiong(熊馨筠), Sichen Jiao(焦思晨), Qinghua Zhang(张庆华), Luyao Wang(王璐瑶), Kun Zhou(周坤), Bowei Cao(曹博维), Xilin Xu(徐熙林), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2025, 34(5): 058201.
[3] Temporal variation characteristics of cathode temperature in a magnetoplasmadynamic thruster
Cheng Zhou(周成), Peng Wu(吴鹏), Yun-Tao Song(宋云涛), Jin-Xing Zheng(郑金星), Yong Li(李永), Ge Wang(王戈), and Hai-Yang Liu(刘海洋). Chin. Phys. B, 2025, 34(2): 025202.
[4] Atomistic understanding of capacity loss in LiNiO2 for high-nickel Li-ion batteries: First-principles study
Shuai Peng(彭率), Li-Juan Chen(陈丽娟), Chang-Chun He(何长春), and Xiao-Bao Yang(杨小宝). Chin. Phys. B, 2024, 33(5): 058201.
[5] Accurate estimation of Li/Ni mixing degree of lithium nickel oxide cathode materials
Penghao Chen(陈鹏浩), Lei Xu(徐磊), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2024, 33(5): 058202.
[6] Plasma potential measurements using an emissive probe made of oxide cathode
Jian-Quan Li(李建泉), Hai-Jie Ma(马海杰), and Wen-Qi Lu(陆文琪). Chin. Phys. B, 2024, 33(4): 045205.
[7] Hollow cathode effect in radio frequency hollow electrode discharge in argon
Liu-Liang He(贺柳良), Feng He(何锋), and Ji-Ting Ouyang(欧阳吉庭). Chin. Phys. B, 2024, 33(3): 035203.
[8] Fluid-chemical modeling of the near-cathode sheath formation process in a high current broken in DC air circuit breaker
Shi-Dong Peng(彭世东), Jing Li(李静), Wei Duan(段薇), Yun-Dong Cao(曹云东), Shu-Xin Liu(刘树鑫), and Hao Huang(黄浩). Chin. Phys. B, 2024, 33(1): 015204.
[9] Zr-doping stabilizes spinel LiMn2O4 as a low cost long cycle life cathode for lithium ion batteries
Xiang-Gong Zhang(张祥功), Wei Wu(吴伟), Si-Si Zhou(周思思), Fei Huang(黄飞), Shi-Hao Xu(许诗浩), Liang Yin(尹良), Wei Yang(杨伟), and Hong Li(李泓). Chin. Phys. B, 2023, 32(5): 056101.
[10] Degradation mechanism of high-voltage single-crystal LiNi0.5Co0.2Mn0.3O2 cathode material
Na Liu(柳娜). Chin. Phys. B, 2023, 32(12): 128202.
[11] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[12] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[13] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[14] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
[15] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
No Suggested Reading articles found!