Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067104    DOI: 10.1088/1674-1056/add1bf
Special Issue: SPECIAL TOPIC — Advanced magnonics
SPECIAL TOPIC — Advanced magnonics Prev   Next  

A two-stage injection locking amplifier based on a cavity magnonic oscillator

Mun Kim, Chunlei Zhang, Chenyang Lu, Jacob Burgess, and Can-Ming Hu†
Department of Physics and Astronomy, University of Manitoba, Winnipeg, CA, R3T 2M5, Canada
Abstract  A cavity magnonic oscillator uses the coupling of a planar transmission line oscillator (cavity) and spin excitations (magnons) in a ferrimagnetic material to achieve superior frequency stability and reduced phase noise. Like many low phase noise oscillators, a cavity magnonic oscillator faces the challenge that its narrow resonance profile is not well suited for injection locking amplification. This work presents an improved design for such an oscillator configured as an injection locking amplifier (ILA) with an extended lock range. The proposed design features a two-stage architecture, consisting of a pre-amplification oscillator and a cavity magnonic oscillator, separated by an isolator to prevent backward locking. By optimizing the circuit parameters of each stage, the proposed design achieved an order of magnitude increase in lock range, when compared to its predecessors, all while preserving the phase noise quality of the input, making it well-suited for narrowband, sensitive signal amplification. Furthermore, this work provides a method for using oscillators with high spectral purity as injection locking amplifiers.
Keywords:  cavity magnonic oscillator      injection locking amplifier  
Received:  27 March 2025      Revised:  27 April 2025      Accepted manuscript online:  29 April 2025
PACS:  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  84.30.Le (Amplifiers)  
  84.40.Dc (Microwave circuits)  
  42.82.Fv (Hybrid systems)  
Fund: This work has been funded by NSERC Discovery Grants, NSERC Discovery Accelerator Supplements, Innovation Proof-of-Concept Grant of Research Manitoba, and Faculty of Science Research Innovation and Commercialization Grant of University of Manitoba (C.-M.H.).
Corresponding Authors:  Can-Ming Hu     E-mail:  can-ming.hu@umanitoba.ca

Cite this article: 

Mun Kim, Chunlei Zhang, Chenyang Lu, Jacob Burgess, and Can-Ming Hu A two-stage injection locking amplifier based on a cavity magnonic oscillator 2025 Chin. Phys. B 34 067104

[1] Haidar M, Awad A A, Dvornik M, Khymyn R, Houshang A and Å kerman J 2019 Nat. Commun. 10 2362
[2] Chen T, Dumas R K, Eklund A, Muduli P K, Houshang A, Awad A A, Durrenfeld P, Malm B G, Rusu A and Å kerman J 2016 Proc. IEEE 104 1919
[3] Zheng X and Zhou Y 2015 Solid State Phenom. 232 147
[4] Jiang S, Yao L, Wang S, Wang D, Liu L, Kumar A, Awad A A, Litvinenko A, Ahlberg M, Khymyn R, et al. 2024 Appl. Phys. Rev. 11 041309
[5] Prokopenko O, Bankowski E, Meitzler T, Tiberkevich V and Slavin A 2011 IEEE Magn. Lett. 2 3000104
[6] Ollivier P M 1972 IEEE J. Solid-State Circuits 7 54
[7] Li Y, ZhangW, Tyberkevych V, KwokWK, Hoffmann A and Novosad V 2020 J. Appl. Phys. 128 13
[8] Hou J T, Zhang P and Liu L 2021 Phys. Rev. Appl. 16 034034
[9] Yao B, Gui Y S, Rao J W, Zhang Y H, Lu W and Hu C M 2023 Phys. Rev. Lett. 130 146702
[10] Lu C, Kim M, Zhang C and Hu C M 2024 J. Appl. Phys. 136 053903
[11] Kim M, Zhang C, Lu C and Hu C M 2024 Appl. Phys. Lett. 124 114103
[12] Adler R 1946 Proc. IRE 34 351
[13] Chen H W, Lu H C and Huang T W 2005 Asia-Pacific Microw. Conf. Proc. 44
[14] Saputra N and Long J R 2008 STW Proc. ProRISC 239
[15] Girlando G and Palmisano G 1999 IEEE Trans. Circuits Syst. II 46 1388
[16] Razavi B 2004 IEEE J. Solid-State Circuits 39 1415
[17] Paciorek L 1965 Proc. IEEE 53 1723
[18] Zdanowski M and Barlik R 2017 Bull. Pol. Acad. Sci.: Tech. Sci. 65 107
[19] Garg R and Bahl I 1979 IEEE Trans. Microw. Theory Techn. 27 700
[20] Paul C R 2007 Analysis of Multiconductor Transmission Lines (New York: Wiley) p. 146
[21] Mooney D and Bayuk F 1983 IEEE Trans. Microw. Theory Techn. 31 171
[22] Lin C H and Chang H Y 2012 IEEE Trans. Microw. Theory Techn. 60 3232
[23] Ikeda H and Itoh Y 2018 IEEE Trans. Microw. Theory Techn. 66 3315
[24] Lin J, Boon C C, Yi X and Feng G 2015 IEEE Microw. Wireless Compon. Lett. 25 52
[25] Oh H S, Song T, Yoon E and Kim C K 2006 IEEE Microw. Wireless Compon. Lett. 16 173
[26] Lindstrand J, Bryant C, Tormanen M and Sjoland H 2011 Proc. ESSCIRC 299
[27] Lin J, Boon C C, Yi X and Lim W M 2014 IEEE Microw. Wireless Compon. Lett. 24 182
[28] Zhang C, Kim M,Wang J and Hu C M 2024 Phys. Rev. Appl. 22 014034
[29] Kalia S, Elbadry M, Sadhu B, Patnaik S, Qiu J and Harjani R 2011 IEEE RFIC Symp. 1 DOI:
[30] Council N R, Earth D on, Studies L, Atmospheric Sciences B on and Weather Radar Technology Beyond NEXRAD C on 2002 Weather Radar Technology Beyond NEXRAD (Washington D. C.: National Academies Press)
[31] Ruthroff C L 1968 Bell Syst. Tech. J. 47 1653
[32] Edmonson P, Smith P and Campbell C 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 631
[33] Li Y, Polakovic T, Wang Y L, Xu J, Lendinez S, Zhang Z, Ding J, Khaire T, Saglam H, Divan R, Pearson J, KwokWK, Xiao Z, Novosad V, Hoffmann A and Zhang W 2019 Phys. Rev. Lett. 123 107701
[34] Hou J T and Liu L 2019 Phys. Rev. Lett. 123 107702
[35] Li Y, Lo T H, Lim J, Pearson J E, Divan R, Zhang W, Welp U, Kwok W K, Hoffmann A and Novosad V 2023 Appl. Phys. Lett. 123 022406
[36] Zhu N, Han X, Zou C L, Xu M and Tang H X 2020 Phys. Rev. A 101 043842
[37] Boiko J, Tolubko V, Barabash O, Eromenko O and Havrylko Y 2019 Telkomnika (Telecommun. Comput. Electron. Control) 17 2025
[38] Mallet F, Ong F. R, Palacios-Laloy A, Nguyen F, Bertet P, Vion D and Esteve D 2009 Nat. Phys. 5 791
[39] Eisenach E R, Barry J F, OKeeffe M F, Schloss J M, Steinecker M H, Englund D R, Braje D A, et al. 2021 Nat. Commun. 12 1357
[40] Wang F K, Li C J, Hsiao C H, Horng T S, Lin J, Peng K C, Jau J K, Li J Y and Chen C C 2010 IEEE Trans. Microwave Theory Tech. 58 4112
[1] Bifurcation of the bound states in the continuum in a dissipative cavity magnonic system
Xinlin Mi(米锌林), Lijun Yan(闫丽君), Bimu Yao(姚碧霂), Shishen Yan(颜世申), Jinwei Rao(饶金威), and Lihui Bai(柏利慧). Chin. Phys. B, 2025, 34(6): 067508.
[2] Enhanced near-field radiative heat transfer between borophene sheets on different substrates
Xiaoyang Han(韩小洋) and Chunzhen Fan(范春珍). Chin. Phys. B, 2024, 33(12): 127802.
[3] Chiral polaritons in semiconductor perovskite metasurface enhanced by bound states in the continuum
Dun Wang(汪顿), Albert Y. Xiong, Julia Q. Zhang, Zengde She(佘增德), Xiaofeng Kang(康晓峰), Ying Zhu(朱莹), Sanjib Ghosh, and Qihua Xiong(熊启华). Chin. Phys. B, 2024, 33(12): 128103.
[4] Influence of substrate effect on near-field radiative modulator based on biaxial hyperbolic materials
Ruiyi Liu(刘睿一), Haotuo Liu(刘皓佗), Yang Hu(胡杨), Zheng Cui(崔峥), and Xiaohu Wu(吴小虎). Chin. Phys. B, 2024, 33(4): 044403.
[5] Actively tuning anisotropic light—matter interaction in biaxial hyperbolic material α-MoO3 using phase change material VO2 and graphene
Kun Zhou(周昆), Yang Hu(胡杨), Biyuan Wu(吴必园), Xiaoxing Zhong(仲晓星), and Xiaohu Wu(吴小虎). Chin. Phys. B, 2024, 33(4): 047103.
[6] Near-field radiative heat transfer between nanoporous GaN films
Xiaozheng Han(韩晓政), Jihong Zhang(张纪红), Haotuo Liu(刘皓佗), Xiaohu Wu(吴小虎), and Huiwen Leng(冷惠文). Chin. Phys. B, 2024, 33(4): 047801.
[7] Exciton-polaritons in a 2D hybrid organic-inorganic perovskite microcavity with the presence of optical Stark effect
Kenneth Coker, Chuyuan Zheng(郑楚媛), Joseph Roger Arhin, Kwame Opuni-Boachie Obour Agyekum, and Weili Zhang(张伟利). Chin. Phys. B, 2024, 33(3): 037102.
[8] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[9] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[10] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[11] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[12] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[13] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[14] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[15] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
No Suggested Reading articles found!