Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067201    DOI: 10.1088/1674-1056/adc407
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Prolonging carrier lifetime in P-type 4H-SiC epilayer by thermal oxidation and hydrogen annealing

Ruijun Zhang(张锐军)1, Mingkun Zhang(张明昆)3, Guoliang Zhang(张国良)1, Yujian Chen(陈雨箭)1, Jia Liu(刘佳)1, Ziqian Tian(田自谦)1, Ye Yu(余烨)1,†, Peng Zhao(赵鹏)1, Jiafa Cai(蔡加法)1, Xiaping Chen(陈厦平)1, Dingqu Lin(林鼎渠)1, Shaoxiong Wu(吴少雄)1, Yuning Zhang(张宇宁)1, Xingliang Xu(徐星亮)4, Rongdun Hong(洪荣墩)1,2,‡, and Feng Zhang(张峰)1,2,§
1 Department of Physics, Xiamen University, Xiamen 361005, China;
2 Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China;
3 The Higher Educational Key Laboratory of Flexible Manufacturing Equipment Integration of Fujian Province, Xiamen Institute of Technology, Xiamen 361005, China;
4 Microsystem and Terahertz Research Center, Chengdu 610000, China
Abstract  A minority carrier lifetime of 25.46 μs in a P-type 4H-SiC epilayer has been attained through sequential thermal oxidation and hydrogen annealing. Thermal oxidation can enhance the minority carrier lifetime in the 4H-SiC epilayer by reducing carbon vacancies. However, this process also generates carbon clusters with limited diffusivity and contributes to the enlargement of surface pits on the 4H-SiC. High-temperature hydrogen annealing effectively reduces stacking fault and dislocation density. Moreover, electron spin resonance analysis indicates a significant reduction in carbon vacancy defects after hydrogen annealing. The mechanisms of the elimination of carbon vacancies by hydrogen annealing include the decomposition of carbon clusters formed during thermal oxidation and the low-pressure selective etching by hydrogen, which increases the carbon content on the 4H-SiC surface and facilitates carbon diffusion. Consequently, the combination of thermal oxidation and hydrogen annealing eliminates carbon vacancies more effectively, substantially enhancing the minority carrier lifetime in P-type 4H-SiC. This improvement is advantageous for the application of high-voltage SiC bipolar devices.
Keywords:  4H-SiC      carrier lifetime      thermal oxidation      hydrogen annealing  
Received:  31 January 2025      Revised:  09 March 2025      Accepted manuscript online:  24 March 2025
PACS:  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  72.80.Jc (Other crystalline inorganic semiconductors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFB3609500 and 2023YFB3609502), the National Natural Science Foundation of China (Grant No. 62274137), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB202043), and the Science and Technology Project of Fujian Province of China (Grant No. 2020I0001).
Corresponding Authors:  Ye Yu, Rongdun Hong, Feng Zhang     E-mail:  yu.ye@sicty.com;rdhong@xmu.edu.cn;fzhang@xmu.edu.cn

Cite this article: 

Ruijun Zhang(张锐军), Mingkun Zhang(张明昆), Guoliang Zhang(张国良), Yujian Chen(陈雨箭), Jia Liu(刘佳), Ziqian Tian(田自谦), Ye Yu(余烨), Peng Zhao(赵鹏), Jiafa Cai(蔡加法), Xiaping Chen(陈厦平), Dingqu Lin(林鼎渠), Shaoxiong Wu(吴少雄), Yuning Zhang(张宇宁), Xingliang Xu(徐星亮), Rongdun Hong(洪荣墩), and Feng Zhang(张峰) Prolonging carrier lifetime in P-type 4H-SiC epilayer by thermal oxidation and hydrogen annealing 2025 Chin. Phys. B 34 067201

[1] Cooper J A, Melloch M R, Singh R, Agarwal A and Palmour J W 2002 IEEE Trans. Electron Dev. 49 Pii s0018-9383(02)03042-3 658
[2] Cooper J A and Agarwal A 2002 Proceedings of the IEEE 90 Pii s0018- 9219(02)05587-1 956
[3] Kimoto T, Yamada K, Niwa H and Suda J 2016 Energies 9 908
[4] Hazdra P, Smrkovsky P, Vobecky J and Mihaila A 2021 IEEE Trans. Electron Dev. 68 202
[5] Asada S, Suda J and Kimoto T 2020 IEEE Trans. Electron Dev. 67 1699
[6] Zhang Q, Das M, Sumakeris J, Callanan R and Agarwal A 2008 IEEE Electron Dev. Lett. 29 1027
[7] Kawahara K, Suda J and Kimoto T 2012 J. Appl. Phys. 111 053710
[8] Bergman J P, Kordina O and Janzen E 1997 Physica Status Solidi a- Applications and Materials Science 162 65
[9] Galeckas A, Linnros J, FrischholzMand Grivickas V 2001 Appl. Phys. Lett. 79 365
[10] Miyazawa T, Tawara T, Takanashi R and Tsuchida H 2016 Appl. Phys. Express 9 111301
[11] Ayedh H M, Nipoti R, Hallen A and Svensson B G 2015 Appl. Phys. Lett. 107 252102
[12] Saito E, Suda J and Kimoto T 2016 Appl. Phys. Express 9 061303
[13] Klein P B, Shanabrook B V, Huh S W, Polyakov A Y, Skowronski M, Sumakeris J J and O’Loughlin M J 2006 Appl. Phys. Lett. 88 052110
[14] Beyer F C, Hemmingsson C G, Pedersen H, Henry A, Isoya J, Morishita N, Ohshima T and Janzen E 2012 J. Phys. D: Appl. Phys. 45 455301
[15] Kimoto T, Nakazawa S, Hashimoto K and Matsunami H 2001 Appl. Phys. Lett. 79 2761
[16] Kimoto T, Hashimoto K and Matsunami H 2003 Jpn. J. Appl. Phys. 42 7294
[17] Storasta L and Tsuchida H 2007 Appl. Phys. Lett. 90 062116
[18] Hiyoshi T and Kimoto T 2009 Appl. Phys. Express 2 041101
[19] Miyazawa T, Ito M and Tsuchida H 2010 Appl. Phys. Lett. 97 202106
[20] Liaugaudas G, Dargis D, Kwasnicki P, Arvinte R, ZielinskiMand Jarasiunas K 2015 J. Phys. D: Appl. Phys. 48 025103
[21] Zhang R J, Hong R D, Cai J F, Chen X P, Lin D Q, Zhang M K, Wu S X, Zhang Y N, Han J R,Wu Z Y and Zhang F 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia, August 25-27, 2021, Wuhan, China, pp. 281-284
[22] Murata K, Tawara T, Yang A, Takanashi R, Miyazawa T and Tsuchida H 2021 J. Appl. Phys. 129 025702
[23] Kimoto T, Niwa H, Okuda T, Saito E, Zhao Y, Asada S and Suda J 2018 J. Phys. D: Appl. Phys. 51 363001
[24] Okuda T, Miyazawa T, Tsuchida H, Kimoto T and Suda J 2014 Appl. Phys. Express 7 085501
[25] Zhang R J, Hong R D, Han J R, Ting H K, Li X G, Cai J F, Chen X P, Fu D Y, Lin D Q, ZhangMK,Wu S X, Zhang Y N,Wu Z Y and Zhang F 2023 Chin. Phys. B 32 067205
[26] Okuda T, Kimoto T and Suda J 2013 Appl. Phys. Express 6 121301
[27] Song H and Sudarshan T S 2013 J. Crystal Growth 371 94
[28] Ha S, Mieszkowski P, Skowronski M and Rowland L B 2002 Journal of Crystal Growth 244 Pii s0022-0248(02)01706-2 257
[29] agano M, Tsuchida H, Suzuki T, Hatakeyama T, Senzaki J and Fukuda K 2010 J. Appl. Phys. 108 8
[30] Abenante L, Izzi M and Ieee 2018 7th IEEE World Conference on Photovoltaic Energy Conversion (WCPEC) / A Joint Conference of 45th IEEE PVSC/28th PVSEC/34th EU PVSEC, June 10-15, 2018, Waikoloa, HI, pp. 3162-3165
[31] Pang S K and Rohatgi A 1993 J. Appl. Phys. 74 5554
[32] Danno K and Kimoto T 2007 J. Appl. Phys. 101 103704
[33] Okuda T, Alfieri G, Kimoto T and Suda J 2015 Appl. Phys. Express 8 111301
[34] Liu S S, Zhang H S, Kang F J, Peng Z, Guo S Q, Lyu J and Gong J 2024 Ann. Phys. 537 2400317
[35] Isoya J, Umeda T, Mizuochi N, Son N T, Janzen E and Ohshima T 2008 Physica Status Solidi B-Basic Solid State Physics 245 1298
[36] Cheng P, Zhang Y M, Guo H, Zhang YMand Lao Y L 2009 Acta Phys. Sin. 58 4214 (in Chinese)
[37] Hiyoshi T and Kimoto T 2009 Appl. Phys. Express 2 091101
[38] Okuda T, Miyazawa T, Tsuchida H, Kimoto T and Suda J 2017 J. Electron. Mater. 46 6411
[39] Charrier A, Coati A, Argunova T, Thibaudau F, Garreau Y, Pinchaux R, Forbeaux I, Debever J M, Sauvage-Simkin M and Themlin J M 2002 J. Appl. Phys. 92 2479
[40] Afanas’ev V V, Stesmans A, Bassler M, Pensl G and Schulz M J 2001 Appl. Phys. Lett. 78 4043
[41] Yuanchao Huang R W, Yiqiang Zhang, Deren Yang and Pi X 2022 Chin. Phys. B 31 56108
[1] Study of leakage current degradation based on stacking faults expansion in irradiated SiC junction barrier Schottky diodes
Maojiu Luo(罗茂久), Yourun Zhang(张有润), Yucheng Wang(王煜丞), Hang Chen(陈航), Rong Zhou(周嵘), Zhi Wang(王智), Chao Lu(陆超), and Bo Zhang(张波). Chin. Phys. B, 2024, 33(10): 108401.
[2] Saturation thickness of stacked SiO2 in atomic-layer-deposited Al2O3 gate on 4H-SiC
Zewei Shao(邵泽伟), Hongyi Xu(徐弘毅), Hengyu Wang(王珩宇), Na Ren(任娜), and Kuang Sheng(盛况). Chin. Phys. B, 2023, 32(8): 087106.
[3] Impacts of hydrogen annealing on the carrier lifetimes in p-type 4H-SiC after thermal oxidation
Ruijun Zhang(张锐军), Rongdun Hong(洪荣墩), Jingrui Han(韩景瑞), Hungkit Ting(丁雄杰), Xiguang Li(李锡光), Jiafa Cai(蔡加法), Xiaping Chen(陈厦平), Deyi Fu(傅德颐), Dingqu Lin(林鼎渠), Mingkun Zhang(张明昆), Shaoxiong Wu(吴少雄),Yuning Zhang(张宇宁), Zhengyun Wu(吴正云), and Feng Zhang(张峰). Chin. Phys. B, 2023, 32(6): 067205.
[4] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[5] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[6] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[7] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[8] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[9] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[10] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[11] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[12] Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique
Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程). Chin. Phys. B, 2020, 29(12): 126101.
[13] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[14] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[15] Synthesis and characterization of β-Ga2O3@GaN nanowires
Shuang Wang(王爽), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Li-Ying Zhang(张丽颖), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Bin Liu(刘斌), Peng Chen(陈鹏), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(2): 028104.
No Suggested Reading articles found!