1 Department of Physics, Xiamen University, Xiamen 361005, China; 2 Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China; 3 The Higher Educational Key Laboratory of Flexible Manufacturing Equipment Integration of Fujian Province, Xiamen Institute of Technology, Xiamen 361005, China; 4 Microsystem and Terahertz Research Center, Chengdu 610000, China
Abstract A minority carrier lifetime of 25.46 μs in a P-type 4H-SiC epilayer has been attained through sequential thermal oxidation and hydrogen annealing. Thermal oxidation can enhance the minority carrier lifetime in the 4H-SiC epilayer by reducing carbon vacancies. However, this process also generates carbon clusters with limited diffusivity and contributes to the enlargement of surface pits on the 4H-SiC. High-temperature hydrogen annealing effectively reduces stacking fault and dislocation density. Moreover, electron spin resonance analysis indicates a significant reduction in carbon vacancy defects after hydrogen annealing. The mechanisms of the elimination of carbon vacancies by hydrogen annealing include the decomposition of carbon clusters formed during thermal oxidation and the low-pressure selective etching by hydrogen, which increases the carbon content on the 4H-SiC surface and facilitates carbon diffusion. Consequently, the combination of thermal oxidation and hydrogen annealing eliminates carbon vacancies more effectively, substantially enhancing the minority carrier lifetime in P-type 4H-SiC. This improvement is advantageous for the application of high-voltage SiC bipolar devices.
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFB3609500 and 2023YFB3609502), the National Natural Science Foundation of China (Grant No. 62274137), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB202043), and the Science and Technology Project of Fujian Province of China (Grant No. 2020I0001).
Corresponding Authors:
Ye Yu, Rongdun Hong, Feng Zhang
E-mail: yu.ye@sicty.com;rdhong@xmu.edu.cn;fzhang@xmu.edu.cn
Cite this article:
Ruijun Zhang(张锐军), Mingkun Zhang(张明昆), Guoliang Zhang(张国良), Yujian Chen(陈雨箭), Jia Liu(刘佳), Ziqian Tian(田自谦), Ye Yu(余烨), Peng Zhao(赵鹏), Jiafa Cai(蔡加法), Xiaping Chen(陈厦平), Dingqu Lin(林鼎渠), Shaoxiong Wu(吴少雄), Yuning Zhang(张宇宁), Xingliang Xu(徐星亮), Rongdun Hong(洪荣墩), and Feng Zhang(张峰) Prolonging carrier lifetime in P-type 4H-SiC epilayer by thermal oxidation and hydrogen annealing 2025 Chin. Phys. B 34 067201
[1] Cooper J A, Melloch M R, Singh R, Agarwal A and Palmour J W 2002 IEEE Trans. Electron Dev. 49 Pii s0018-9383(02)03042-3 658 [2] Cooper J A and Agarwal A 2002 Proceedings of the IEEE 90 Pii s0018- 9219(02)05587-1 956 [3] Kimoto T, Yamada K, Niwa H and Suda J 2016 Energies 9 908 [4] Hazdra P, Smrkovsky P, Vobecky J and Mihaila A 2021 IEEE Trans. Electron Dev. 68 202 [5] Asada S, Suda J and Kimoto T 2020 IEEE Trans. Electron Dev. 67 1699 [6] Zhang Q, Das M, Sumakeris J, Callanan R and Agarwal A 2008 IEEE Electron Dev. Lett. 29 1027 [7] Kawahara K, Suda J and Kimoto T 2012 J. Appl. Phys. 111 053710 [8] Bergman J P, Kordina O and Janzen E 1997 Physica Status Solidi a- Applications and Materials Science 162 65 [9] Galeckas A, Linnros J, FrischholzMand Grivickas V 2001 Appl. Phys. Lett. 79 365 [10] Miyazawa T, Tawara T, Takanashi R and Tsuchida H 2016 Appl. Phys. Express 9 111301 [11] Ayedh H M, Nipoti R, Hallen A and Svensson B G 2015 Appl. Phys. Lett. 107 252102 [12] Saito E, Suda J and Kimoto T 2016 Appl. Phys. Express 9 061303 [13] Klein P B, Shanabrook B V, Huh S W, Polyakov A Y, Skowronski M, Sumakeris J J and O’Loughlin M J 2006 Appl. Phys. Lett. 88 052110 [14] Beyer F C, Hemmingsson C G, Pedersen H, Henry A, Isoya J, Morishita N, Ohshima T and Janzen E 2012 J. Phys. D: Appl. Phys. 45 455301 [15] Kimoto T, Nakazawa S, Hashimoto K and Matsunami H 2001 Appl. Phys. Lett. 79 2761 [16] Kimoto T, Hashimoto K and Matsunami H 2003 Jpn. J. Appl. Phys. 42 7294 [17] Storasta L and Tsuchida H 2007 Appl. Phys. Lett. 90 062116 [18] Hiyoshi T and Kimoto T 2009 Appl. Phys. Express 2 041101 [19] Miyazawa T, Ito M and Tsuchida H 2010 Appl. Phys. Lett. 97 202106 [20] Liaugaudas G, Dargis D, Kwasnicki P, Arvinte R, ZielinskiMand Jarasiunas K 2015 J. Phys. D: Appl. Phys. 48 025103 [21] Zhang R J, Hong R D, Cai J F, Chen X P, Lin D Q, Zhang M K, Wu S X, Zhang Y N, Han J R,Wu Z Y and Zhang F 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia, August 25-27, 2021, Wuhan, China, pp. 281-284 [22] Murata K, Tawara T, Yang A, Takanashi R, Miyazawa T and Tsuchida H 2021 J. Appl. Phys. 129 025702 [23] Kimoto T, Niwa H, Okuda T, Saito E, Zhao Y, Asada S and Suda J 2018 J. Phys. D: Appl. Phys. 51 363001 [24] Okuda T, Miyazawa T, Tsuchida H, Kimoto T and Suda J 2014 Appl. Phys. Express 7 085501 [25] Zhang R J, Hong R D, Han J R, Ting H K, Li X G, Cai J F, Chen X P, Fu D Y, Lin D Q, ZhangMK,Wu S X, Zhang Y N,Wu Z Y and Zhang F 2023 Chin. Phys. B 32 067205 [26] Okuda T, Kimoto T and Suda J 2013 Appl. Phys. Express 6 121301 [27] Song H and Sudarshan T S 2013 J. Crystal Growth 371 94 [28] Ha S, Mieszkowski P, Skowronski M and Rowland L B 2002 Journal of Crystal Growth 244 Pii s0022-0248(02)01706-2 257 [29] agano M, Tsuchida H, Suzuki T, Hatakeyama T, Senzaki J and Fukuda K 2010 J. Appl. Phys. 108 8 [30] Abenante L, Izzi M and Ieee 2018 7th IEEE World Conference on Photovoltaic Energy Conversion (WCPEC) / A Joint Conference of 45th IEEE PVSC/28th PVSEC/34th EU PVSEC, June 10-15, 2018, Waikoloa, HI, pp. 3162-3165 [31] Pang S K and Rohatgi A 1993 J. Appl. Phys. 74 5554 [32] Danno K and Kimoto T 2007 J. Appl. Phys. 101 103704 [33] Okuda T, Alfieri G, Kimoto T and Suda J 2015 Appl. Phys. Express 8 111301 [34] Liu S S, Zhang H S, Kang F J, Peng Z, Guo S Q, Lyu J and Gong J 2024 Ann. Phys. 537 2400317 [35] Isoya J, Umeda T, Mizuochi N, Son N T, Janzen E and Ohshima T 2008 Physica Status Solidi B-Basic Solid State Physics 245 1298 [36] Cheng P, Zhang Y M, Guo H, Zhang YMand Lao Y L 2009 Acta Phys. Sin. 58 4214 (in Chinese) [37] Hiyoshi T and Kimoto T 2009 Appl. Phys. Express 2 091101 [38] Okuda T, Miyazawa T, Tsuchida H, Kimoto T and Suda J 2017 J. Electron. Mater. 46 6411 [39] Charrier A, Coati A, Argunova T, Thibaudau F, Garreau Y, Pinchaux R, Forbeaux I, Debever J M, Sauvage-Simkin M and Themlin J M 2002 J. Appl. Phys. 92 2479 [40] Afanas’ev V V, Stesmans A, Bassler M, Pensl G and Schulz M J 2001 Appl. Phys. Lett. 78 4043 [41] Yuanchao Huang R W, Yiqiang Zhang, Deren Yang and Pi X 2022 Chin. Phys. B 31 56108
Synthesis and characterization of β-Ga2O3@GaN nanowires Shuang Wang(王爽), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Li-Ying Zhang(张丽颖), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Bin Liu(刘斌), Peng Chen(陈鹏), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(2): 028104.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.