Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 127802    DOI: 10.1088/1674-1056/ad84cd
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced near-field radiative heat transfer between borophene sheets on different substrates

Xiaoyang Han(韩小洋) and Chunzhen Fan(范春珍)†
Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
Abstract  Near-field radiative heat transfer (NFRHT) has the potential to exceed the blackbody limit by several orders of magnitude, offering significant opportunities for energy harvesting. In this study, we have examined the NFRHT between two borophene sheets through the calculation of heat transfer coefficient (HTC). Due to the tunneling of evanescent waves, borophene sheet allows for enhanced heat flux and adjustable NFRHT by varying its electron density and electron relaxation time. Additionally, the near field coupling is further examined when the borophene is deposited on dielectric or lossy substrates. The maximum HTC is closely related to the real part of the dielectric substrate. As a case study, the HTCs on the lossy substrate of MoO$_{3}$, ZnSe, and SiC are calculated for comparisons. Our results indicate that MoO$_{3}$ is the optimal substrate to get the enhanced energy transfer coefficient. It results in a remarkable value of 1737 times higher than the blackbody limit owing to the enhanced photon tunneling probability. Thus, our study reveals the effect of substrate on the HTC between borophene sheets and provides a theoretical guidance for the design of near-field thermal radiation devices.
Keywords:  near-field radiative heat transfer      borophene      lossy substrate      heat transfer coefficient  
Received:  29 July 2024      Revised:  05 September 2024      Accepted manuscript online:  09 October 2024
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the Natural Science Foundation of Henan Province, China (Grant No. 232102231023).
Corresponding Authors:  Chunzhen Fan     E-mail:  chunzhen@zzu.edu.cn

Cite this article: 

Xiaoyang Han(韩小洋) and Chunzhen Fan(范春珍) Enhanced near-field radiative heat transfer between borophene sheets on different substrates 2024 Chin. Phys. B 33 127802

[1] Huang J P 2020 Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Singapore: Springer)
[2] Zhang Z R, Xu L J, Qu T, Lei M, Lin Z K, Ouyang X P, Jiang J H and Huang J P 2023 Nat. Rev. Phys. 5 218
[3] Xie H L, Yin H Y and Fan C Z 2024 Chin. Phys. Lett. 41 044202
[4] Yang F B, Zhang Z R, Xu L J, Liu Z F, Jin P, Zhuang P F, Lei M, Liu J R, Jiang J H, Ouyang X P, Marchesoni F and Huang J P 2024 Rev. Mod. Phys. 96 015002
[5] Polder D and Van Hove M 1971 Phys. Rev. B 4 3303
[6] Pendry J B 1999 J. Phys.: Condens. Matter 11 6621
[7] Volokitin A I and Persson B N J 2004 Phys. Rev. B 69 045417
[8] Kralik T, Hanzelka P, Zobac M, Musilova V, Fort T and Horak M 2012 Phys. Rev. Lett. 109 224302
[9] van Zwol P J, Thiele S, Berger C, de Heer W A and Chevrier J 2012 Phys. Rev. Lett. 109 264301
[10] Worbes L, Hellmann D and Kittel A 2013 Phys. Rev. Lett. 110 134302
[11] St-Gelais R, Guha B, Zhu L, Fan S and Lipson M 2014 Nano Lett. 14 6971
[12] Song B, Ganjeh Y, Sadat S, Thompson D, Fiorino A, Fernández- Hurtado V, Feist J, Garcia-Vidal F J, Cuevas J C, Reddy P and Meyhofer E 2015 Nat. Nanotechnol. 10 253
[13] Kim K, Song B, Fernández-Hurtado V, LeeW, JeongW, Cui L, Thompson D, Feist J, Reid M T H, García-Vidal F J, Cuevas J C, Meyhofer E and Reddy P 2015 Nature 528 387
[14] St-Gelais R, Zhu L, Fan S and Lipson M 2016 Nat. Nanotechnol. 11 515
[15] Bernardi M P, Milovich D and Francoeur M 2016 Nat. Commun. 7 12900
[16] Hargreaves C M 1969 Phys. Lett. A 30 491
[17] Hu L, Narayanaswamy A, Chen X and Chen G 2008 Appl. Phys. Lett. 92 133106
[18] Song J L, Cheng Q, Zhang B, Lu L, Zhou X P, Luo Z X and Hu R 2021 Rep. Prog. Phys. 84 036501
[19] Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P and Meyhofer E 2018 Nat. Nanotechnol. 13 806
[20] Inoue T, Ikeda K, Song B, Suzuki T, Ishino K, Asano T and Noda S 2021 ACS Photon. 8 2466
[21] Li J Y, Gao Y and Huang J P 2010 J. Appl. Phys. 108 074504
[22] Gu W, Tang G H and Tao W Q 2015 Int. J. Heat Mass Transfer 82 429
[23] Shen X, Li Y, Jiang C and Huang J 2016 Phys. Rev. Lett. 117 055501
[24] Ben-Abdallah P and Biehs S A 2014 Phys. Rev. Lett. 112 044301
[25] Fan C Z, Wu C L, Wang Y Y, Wang B and Wang J 2024 Phys. Rep. 1077 1
[26] Yin H Y and Fan C Z 2023 Chin. Phys. Lett. 40 077801
[27] Yin H Y and Fan C Z 2023 Results Phys. 45 106216
[28] Stauber T, Peres N M R and Geim A K 2008 Phys. Rev. B 78 085432
[29] Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004
[30] Mikhailov S A and Ziegler K 2007 Phys. Rev. Lett. 99 016803
[31] Mao Y, Zhang H, Xiong J, Liu X P, Wang Q Q and Wang J Q 2024 J. Phys. D: Appl. Phys. 57 255111
[32] Yi X J, Zhong L Y, Wang T B, Liu W X, Zhang D J, Yu T B, Liao Q H and Liu N H 2019 Eur. Phys. J. B 92 217
[33] Zhang Y, Yi H L and Tan H P 2018 ACS Photon. 5 3739
[34] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 PNAS 102 10451
[35] Song J, Chen L, Jin L, Yao L, Caglayan H and Hu R 2022 Appl. Phys. Lett. 121 171104
[36] Askenazi B, Vasanelli A, Delteil A, Todorov Y, Andreani L C, Beaudoin G, Sagnes I and Sirtori C 2014 New J. Phys. 16 043029
[37] Habibzadeh M, Lin H and Edalatpour S 2023 J. Quantum Spectrosc. Rad. 307 108662
[38] Svetovoy V B, van Zwol P J and Chevrier J 2012 Phys. Rev. B 85 155418
[39] Wang A, Zheng Z and Xuan Y 2016 J. Quantum Spectrosc. Rad. 180 117
[40] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
[41] Zhou C L,Wu X H, Zhang Y and Yi H L 2022 Int. J. Heat Mass Transfer 183 122140
[42] Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R T, Puretzky A A, Das P M, Sumpter B G, Geohegan D B, Kong J, Saito R, Drndic M, Meunier V and DresselhausMS 2016 Nano Lett. 16 2260
[43] Dereshgi S A, Liu Z and Aydin K 2020 Opt. Express 28 16725
[44] Yi X J, Hong X J, Shehzad K, Wang T B, Xu X M, Liao Q H, Yu T B and Liu N H 2019 Mater. Res. Express 6 025906
[45] Messina R, Ben-Abdallah P, Guizal B and Antezza M 2017 Phys. Rev. B 96 045402
[46] Efetov D K and Kim P 2010 Phys. Rev. Lett. 105 256805
[47] Lajaunie L, Boucher F, Dessapt R and Moreau P 2013 Phys. Rev. B 88 115141
[48] Amotchkina T, Trubetskov M, Hahner D and Pervak V 2020 Appl. Opt. 59 A40
[49] Zhang J, Yang B, Yu K, Zhang K, Liu H and Wu X 2023 Phys. Scr. 98 075516
[50] Singh D K and Majumdar P 2018 Phys. Rev. B 98 195130
[51] Pascale M, Giteau M and Papadakis G T 2023 Appl. Phys. Lett. 122 100501
[52] Grudinin D V, Ermolaev G A, Baranov D G, Toksumakov A N, Voronin K V, Slavich A S, Vyshnevyy A A, Mazitov A B, Kruglov I A, Ghazaryan D A, Arsenin A V, Novoselov K S and Volkov V S 2023 Mater. Horiz. 10 2427
[53] Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J and König T A F 2019 ACS Appl. Mater. Interfaces 11 13752
[54] HeMY,Wang Q, Zhang H, Xiong J, Liu X P andWang J Q 2024 Phys. Scr. 99 035506
[55] Tian S, Wang J Q, Sun S, He M Y, Mao Y, Gao Y and Ding P 2023 Results Phys. 49 106485
[56] Zhang Z, Penev E S and Yakobson B I 2017 Chem. Soc. Rev. 46 6746
[57] Salihoglu H, Nam W, Traverso L, Segovia M, Venuthurumilli P K, Liu W, Wei Y, Li W and Xu X 2020 Nano Lett. 20 6091
[58] Loomis J J and Maris H J 1994 Phys. Rev. B 50 18517
[1] Near-field radiative heat transfer between nanoporous GaN films
Xiaozheng Han(韩晓政), Jihong Zhang(张纪红), Haotuo Liu(刘皓佗), Xiaohu Wu(吴小虎), and Huiwen Leng(冷惠文). Chin. Phys. B, 2024, 33(4): 047801.
[2] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[3] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[4] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[5] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[6] Band engineering of B2H2 nanoribbons
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2019, 28(4): 046803.
[7] Electric field manipulation of multiple nonequivalent Dirac cones in the electronic structures of hexagonal CrB4 sheet
Jinkun Wang(王锦坤), Yajiao Ke(柯亚娇), Qingxing Xie(谢晴兴), Yanli Li(李艳丽), Jiafu Wang(王嘉赋). Chin. Phys. B, 2018, 27(9): 097304.
[8] Review of thermal transport and electronic properties of borophene
Dengfeng Li(李登峰), Ying Chen(陈颖), Jia He(何佳), Qiqi Tang(汤琪琪), Chengyong Zhong(钟承勇), Guangqian Ding(丁光前). Chin. Phys. B, 2018, 27(3): 036303.
No Suggested Reading articles found!