|
Special Issue:
SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications
|
| SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications |
Prev
Next
|
|
|
Interfacial design and thermoelectric properties of C3N4-C20 molecular junctions based on quantum interference |
| Shutao Hu(胡澍涛)1,†, Meng Qian(钱萌)1,†, Gang Zhang(张刚)2,‡, and Bei Zhang(张蓓)1,§ |
1 School of Physics Science and Technology, Xinjiang University, Urumqi 830017, China; 2 Changsanjiao Research Institute, Beijing Institute of Technology, Jiaxing 314001, China |
|
|
|
|
Abstract Quantum interference effect serves as a critical strategy for addressing incorrect energy level alignment between frontier molecular orbitals and electrodes in molecular junctions. Weak-coupling structures offer an effective approach to suppress phonon thermal conductance. The thermoelectric properties of pure C$_{3}$N$_{4}$ nanoribbon devices and C$_{3}$N$_{4}$-C$_{20}$ molecular junctions are systematically investigated based on density functional theory (DFT) combined with non-equilibrium Green's function (NEGF) formalism. The results show that pure C$_{3}$N$_{4}$ nanoribbon devices have superior charge transport capabilities and excellent Seebeck coefficients. A remarkable thermoelectric figure of merit ($ZT=0.98$) is achieved near 0.09 eV. The pronounced scattering effect induced by embedding a C$_{20}$ molecule in the center of the C$_{3}$N$_{4}$ nanoribbon significantly suppresses phonon transport. A maximum ZT value of 1.68 is observed at 0.987 eV. The electron mobility of C$_{3}$N$_{4}$-C$_{20}$-par is effectively increased due to quantum interference effect which greatly improves the alignment between the C$_{20}$ molecule's frontier orbital energy level and C$_{3}$N$_{4}$ electrodes. The C$_{3}$N$_{4}$-C$_{20}$-van der Waals (vdW) molecular junction allows very few phonons to pass through the C$_{20}$ molecule from the left electrode to the right electrode. As a result, the C$_{3}$N$_{4}$-C$_{20}$-vdW junction achieves an excellent ZT value of 3.82 near the Femi level.
|
Received: 02 March 2025
Revised: 03 April 2025
Accepted manuscript online: 09 April 2025
|
|
PACS:
|
89.20.Bb
|
(Industrial and technological research and development)
|
| |
31.15.E
|
(Density-functional theory)
|
| |
73.50.Lw
|
(Thermoelectric effects)
|
| |
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12164046). |
Corresponding Authors:
Gang Zhang, Bei Zhang
E-mail: gangzhang2006@gmail.com;zhb@xju.edu.cn
|
Cite this article:
Shutao Hu(胡澍涛), Meng Qian(钱萌), Gang Zhang(张刚), and Bei Zhang(张蓓) Interfacial design and thermoelectric properties of C3N4-C20 molecular junctions based on quantum interference 2025 Chin. Phys. B 34 068903
|
[1] Reddy P, Jang S Y, Segalman R A and Majumdar A 2007 Science 315 1568 [2] Bürkle M, Hellmuth T J, Pauly F and Asai Y 2015 Phys. Rev. B 91 165419 [3] Perroni C A, Ninno D and Cataudella V 2016 J. Phys. Condens. Matter. 28 373001 [4] Xiong Y, Xu L, Sun L, Wu P, Xie G and Hu B 2019 Adv. Electron. Mater. 5 1800877 [5] Xie Z X, Zhang Y, Yu X, Li K M and Chen Q 2014 J. Appl. Phys. 115 104309 [6] Chen X K, Xie Z X, Zhou W X, Tang L M and Chen K Q 2016 Appl. Phys. Lett. 109 023101 [7] Hung N T, Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. Lett. 117 036602 [8] Liu Y Y, Li B L, Chen S Z, Jiang X and Chen K Q 2017 Appl. Phys. Lett. 111 133107 [9] Chen D H, Yang Z, Fu X Y, Qin S A, Yan Y, Wang C K, Li Z L and Qiu S 2024 Chin. Phys. B 33 047201 [10] Zeng Y J, Feng Y X, Tang L M and Chen K Q 2021 Appl. Phys. Lett. 118 183103 [11] Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X and Chen K Q 2021 Appl. Phys. Lett. 119 063503 [12] Yee S K, Malen J A, Majumdar A and Segalman R A 2011 Nano Lett. 11 4089 [13] Jin C and Solomon G C 2018 J. Phys. Chem. C 122 14233 [14] Nakamura H, Ohto T, Ishida T and Asai Y 2013 J. Am. Chem. Soc. 135 16545 [15] Famili M, Grace I M, Al-Galiby Q, Sadeghi H and Lambert C J 2018 Adv. Funct. Mater. 28 1703135 [16] Zhang B, Zhang S, Dong J, Sun Y, Ouyang F and Long M 2021 J. Mater. Chem. C 9 12322 [17] Finch C M, García-Suárez V M and Lambert C J 2009 Phys. Rev. B 79 033405 [18] Miao R, Xu H, Skripnik M, Cui L, Wang K, Pedersen K G L, Leijnse M, Pauly F, Wärnmark K, Meyhofer E, Reddy P and Linke H 2018 Nano Lett. 18 5666 [19] Wimmer M, Palma J L, Tarakeshwar P and Mujica V 2016 J. Phys. Chem. Lett. 7 2977 [20] Richert S, Cremers J, Kuprov I, PeeksMD, Anderson H L and Timmel C R 2017 Nat. Commun. 8 14842 [21] Calogero G, Alcón I, Papior N, Jauho A P and Brandbyge M 2019 J. Am. Chem. Soc. 141 13081 [22] Magoga M and Joachim C 1999 Phys. Rev. B 59 16011 [23] Wu Q, Sadeghi H, García-Suárez V M, Ferrer J and Lambert C J 2017 Sci. Rep. 7 11680 [24] Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataraman L and Hybertsen M S 2012 Nat. Nanotechnol. 7 663 [25] Damle P, Ghosh A W and Datta S 2002 Chem. Phys. 281 171 [26] Roland C, Larade B, Taylor J and Guo H 2001 Phys. Rev. B 65 041401 [27] Khalatbari H, Vishkayi S I and Soleimani H R 2019 Physica E 108 372 [28] Zhou P, Li G and Sun M 2023 Phys. Chem. Chem. Phys. 25 31615 [29] Ji G, Li D, Fang C, Xu Y, Zhai Y, Cui B and Liu D 2012 Phys. Lett. A 376 773 [30] Otani M, Ono T and Hirose K 2004 Phys. Rev. B 69 [31] Miyamoto Y and Saito M 2001 Phys. Rev. B 63 161401 [32] Cao X H, Zhou W X, Chen C Y, Tang L M, Long M and Chen K Q 2017 Sci. Rep. 7 10842 [33] Nikolić B K, Saha K K, Markussen T and Thygesen K S 2012 J. Comput. Electron. 11 78 [34] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J, Domen K and Antonietti M 2010 Nat. Mater. 8 271 [35] Patnaik S, Sahoo D P and Parida K 2021 Carbon 172 682 [36] Zhang L, Zhang M, Song X, Wang H and Bian Z 2020 Chem. Eng. J. 399 125825 [37] Eroglu Z and Metin O 2023 ACS Appl. Nano Mater. 6 7960 [38] Antil B, Kumar L, Das M R and Deka S 2022 J. Energy Storage. 52 153722 [39] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407 [40] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro 2002 Phys. Rev. B 65 165401 [41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [42] Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101 [43] Zhang C X, Li Q, Tang L M, Yang K, Xiao J, Chen K Q and Deng H X 2019 J. Mater. Chem. C 7 6052 [44] Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X and Chen K Q 2020 Sci. China Phys. Mech. Astron. 63 276811 [45] Dong J, Zhang B, Zhang S, Sun Y and Long M 2022 Appl. Surf. Sci. 579 152155 [46] Qiu Y and Zhang B 2023 Phys. Chem. Chem. Phys. 25 27448 [47] Zhang B, Zhang S and Zhang G 2023 Nanoscale Microscale Thermophys. Eng. 27 168 [48] Zhang B 2022 Appl. Surf. Sci. 597 153722 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|