Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 068902    DOI: 10.1088/1674-1056/adc402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of negative information dissemination and vaccination behavioral decision-making on epidemic spreading in a three-layer network

Liang’an Huo(霍良安)1,2,† and Leyao Yin(尹乐瑶)1
1 Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 School of Intelligent Emergency Management, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt protective measures. However, whether to disseminate specific information is also a behavioral decision. In light of this understanding, we develop a coupled information-vaccination-epidemic model to depict these co-evolutionary dynamics in a three-layer network. Negative information dissemination and vaccination are treated as separate decision-making processes. We then examine the combined effects of herd and risk motives on information dissemination and vaccination decisions through the lens of game theory. The microscopic Markov chain approach (MMCA) is used to describe the dynamic process and to derive the epidemic threshold. Simulation results indicate that increasing the cost of negative information dissemination and providing timely clarification can effectively control the epidemic. Furthermore, a phenomenon of diminishing marginal utility is observed as the cost of dissemination increases, suggesting that authorities do not need to overinvest in suppressing negative information. Conversely, reducing the cost of vaccination and increasing vaccine efficacy emerge as more effective strategies for outbreak control. In addition, we find that the scale of the epidemic is greater when the herd motive dominates behavioral decision-making. In conclusion, this study provides a new perspective for understanding the complexity of epidemic spreading by starting with the construction of different behavioral decisions.
Keywords:  negative information      vaccination      epidemic spreading      behavioral decision-making      three-layer network  
Received:  05 September 2024      Revised:  03 March 2025      Accepted manuscript online:  24 March 2025
PACS:  89.75.-k (Complex systems)  
  87.23.Ge (Dynamics of social systems)  
  87.19.X- (Diseases)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 72174121), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Soft Science Research Project of Shanghai (Grant No. 22692112600).
Corresponding Authors:  Liang'an Huo     E-mail:  huohuolin@yeah.net

Cite this article: 

Liang’an Huo(霍良安) and Leyao Yin(尹乐瑶) Influence of negative information dissemination and vaccination behavioral decision-making on epidemic spreading in a three-layer network 2025 Chin. Phys. B 34 068902

[1] Bhadoria P, Gupta G and Agarwal A 2021 J. Fam. Med. Prim. Care 10 2745
[2] Betsch C, Korn L, Sprengholz P, Felgendreff L, Eitze S, Schmid P and Böhm R 2020 Proc. Natl. Acad. Sci. USA 117 21851
[3] Chalhoub Z, Koubeissy H, Fares Y and Abou-Abbas L 2022 PLoS One 17 e0270567
[4] Zhang J and Wang N 2024 Expert Syst. Appl. 249 123725
[5] Kermack W O and McKendrick A G 1991 Bull. Math. Biol. 53 33
[6] Kermack W O and McKendrick A G 1991 Bull. Math. Biol. 53 57
[7] Li J and Ma Z 2002 Math. Comput. Model. 35 1235
[8] Nakata Y, Enatsu Y and Muroya Y 2012 Int. J. Biomath. 05 1250009
[9] Harko T, Lobo F S N and Mak M K 2014 Appl. Math. Comput. 236 184
[10] Kuniya T,Wang J and Inaba H 2016 Discr. Contin. Dyn. Syst. Ser. B 21 3515
[11] Franceschetti A and Pugliese A 2007 J. Math. Biol. 57 1
[12] He S, Peng Y and Sun K 2020 Nonlinear Dyn. 101 1667
[13] Mwalili S, Kimathi M, Ojiambo V, Gathungu D and Mbogo R 2020 BMC Res. Notes 13 352
[14] Boulaaras S, Ramalingam R and Gnanaprakasam A J 2023 Eur. Phys. J. Spec. Top. 232 2485
[15] Li D, Xie W and Han D 2024 Appl. Math. Comput. 474 128700
[16] Kabir K M A, Kuga K and Tanimoto J 2019 Chaos Solitons Fract. 119 118
[17] Wang Z and Xia C 2020 Nonlinear Dyn. 102 3039
[18] Zhang L, Guo C and Feng M 2022 Chaos 32 083138
[19] Xie X, Huo L, Dong Y, Li M and Cheng Y 2024 Phys. Scr. 99 035211
[20] Pei H, Ding Y and Yan G 2024 Eur. Phys. J. B 97 52
[21] Funk S, Gilad E, Watkins C and Jansen V A A 2009 Proc. Natl. Acad. Sci. USA 106 6872
[22] Granell C, Gómez S and Arenas A 2013 Phys. Rev. Lett. 111 128701
[23] Granell C, Gómez S and Arenas A 2014 Phys. Rev. E 90 012808
[24] Xia C, Wang Z, Zheng C, Guo Q, Shi Y, Dehmer M and Chen Z 2019 Inf. Sci. 471 185
[25] Huang H, Chen Y and Ma Y 2021 Appl. Math. Comput. 388 125536
[26] Shuo Lv, Wang Y, Guo C and Zhang L 2024 Nonlinear Dyn. 112 2367
[27] Huo L and Wu B 2023 Chin. Phys. B 33 038702
[28] Dong Y, Huo L, Xie X and Li M 2023 Chin. Phys. B 32 070205
[29] Huo L and Wu B 2023 Phys. Scr. 98 125231
[30] Ruan Z, Tang M and Liu Z 2012 Phys. Rev. E 86 036117
[31] Xie X and Huo L 2024 Chaos Solitons Fract. 181 114586
[32] Wu B and Huo L 2024 Chaos Solitons Fract. 180 114522
[33] Shi H, Duan Z, Chen G and Li R 2009 Chin. Phys. B 18 3309
[34] Li L, Dong G, Zhu H and Tian L 2024 Appl. Math. Comput. 472 128617
[35] Wang X, Jia D, Gao S, Xia C, Li X and Wang Z 2020 Appl. Math. Comput. 380 125232
[36] Wang Z, Andrews M A,Wu Z,Wang L and Bauch C T 2015 Phys. Life Rev. 15 1
[37] Han D and Wang X 2023 Chaos Solitons Fract. 176 114106
[38] Zhang H, Zhang J, Zhou C, Small M and Wang B 2010 New J. Phys. 12 023015
[39] Zhang H, Wu Z, Xu X, Small M, Wang L and Wang B 2013 Phys. Rev. E 88 012813
[40] Zhang H, Wu Z, Tang M and Lai Y 2014 Sci. Rep. 4 5666
[41] Zhang H, Shu P,Wang Z, TangMand Small M 2017 Appl. Math. Comput. 294 332
[42] Kabir K M A, Kuga K and Tanimoto J 2019 Chaos Solitons Fract. 119 180
[43] Kabir K M A, Ullah M S and Tanimoto J 2023 Vaccines 11 1476
[44] Kabir K M A, Islam M S and Sharif Ullah M 2023 Vaccines 11 1421
[45] Jiang B, Lin Y, Zou R, Su R and Mi Y 2023 Chaos Solitons Fract. 170 113411
[46] Wang Y, Tu L, Wang X and Guo Y 2024 Chaos Solitons Fract. 180 114419
[47] Yin Q, Wang Z, Xia C and Bauch C T 2022 Commun. Nonlinear Sci. Numer. Simul. 109 106312
[48] Steinegger B, Arenas A, Gómez-Gardeñes J and Granell C 2020 Phys. Rev. Res. 2 023181
[49] Zhang W and Brandes U 2023 Chaos Solitons Fract. 176 114172
[50] Ford J L, Douglas M and Barrett A K 2023 Health Commun. 38 2336
[51] Xia C, Wang L, Wang J and Wang J 2012 Commun. Theor. Phys. 58 343
[52] Zhang Q, Tang R, Lu Y and Wang X 2024 Appl. Math. Comput. 474 128721
[53] Boccaletti S, Latora V, Moreno Y, Chavez M, and Hwang D 2006 Phys. Rep. 424 175
[54] Deng Y and Wu J 2024 PNAS Nexus 3 228
[55] Aparicio S, Villazoń-Terrazas J and Á lvarez G 2015 Entropy 17 5848
[56] Nokkala J, Piilo J and Bianconi G 2024 Math. Theor. 57 233001
[57] Christakis N A and Fowler J H 2012 Stat. Med. 32 556
[58] Muhlmeyer M, Agarwal S and Huang J 2020 IEEE Syst. J. 14 5187
[59] Scholly K, Katz A R, Gascoigne J and Holck P S 2005 J. Am. Coll. Health 53 159
[60] Angerer S, Glätzle-Rützler D, Lergetporer P and Rittmannsberger T 2024 Eur. Econ. Rev. 163 104640
[61] Moussaoui L S, Heiser N H and Olivier Desrichard 2024 Health Psychol. 43 237
[62] SocioPatterns Collaboration. See http://www.sociopatterns.org/; accessed December 2018
[63] Li M, Huo L, Xie X and Dong Y 2024 Chaos 34 083116
[64] Our World in Data. See https://ourworldindata.org/explorers/covid; accessed February 2025
[1] Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks
Xiongding Liu(柳雄顶), Xiaodan Zhao(赵晓丹), Xiaojing Zhong(钟晓静), and Wu Wei(魏武). Chin. Phys. B, 2025, 34(6): 060203.
[2] Vital nodes identification method integrating degree centrality and cycle ratio
Yu Zhao(赵玉) and Bo Yang(杨波). Chin. Phys. B, 2025, 34(3): 038901.
[3] Individual dynamics and local heterogeneity provide a microscopic view of the epidemic spreading
Youyuan Zhu(朱友源), Ruizhe Shen(沈瑞哲), Hao Dong(董昊), and Wei Wang(王炜). Chin. Phys. B, 2024, 33(5): 058301.
[4] Studying the co-evolution of information diffusion, vaccination behavior and disease transmission in multilayer networks with local and global effects
Liang'an Huo(霍良安) and Bingjie Wu(武兵杰). Chin. Phys. B, 2024, 33(3): 038702.
[5] Impact of environmental factors on the coevolution of information-emotions-epidemic dynamics in activity-driven multiplex networks
Liang'an Huo(霍良安), Bingjie Liu(刘炳杰), and Xiaomin Zhao(赵晓敏). Chin. Phys. B, 2024, 33(12): 128903.
[6] An improved ISR-WV rumor propagation model based on multichannels with time delay and pulse vaccination
Yafang Dong(董雅芳), Liangán Huo(霍良安), Xiaoxiao Xie(谢笑笑), and Ming Li(李明). Chin. Phys. B, 2023, 32(7): 070205.
[7] Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring
Xiao-Long Peng(彭小龙) and Yi-Dan Zhang(张译丹). Chin. Phys. B, 2021, 30(5): 058901.
[8] Reverse-feeding effect of epidemic by propagators in two-layered networks
Dayu Wu(吴大宇), Yanping Zhao(赵艳萍), Muhua Zheng(郑木华), Jie Zhou(周杰), Zonghua Liu(刘宗华). Chin. Phys. B, 2016, 25(2): 028701.
[9] Epidemic spreading on random surfer networks with infected avoidance strategy
Yun Feng(冯运), Li Ding(丁李), Yun-Han Huang(黄蕴涵), Zhi-Hong Guan(关治洪). Chin. Phys. B, 2016, 25(12): 128903.
[10] Global stability of a susceptible-infected-susceptible epidemic model on networks with individual awareness
Li Ke-Zan (李科赞), Xu Zhong-Pu (徐忠朴), Zhu Guang-Hu (祝光湖), Ding Yong (丁勇). Chin. Phys. B, 2014, 23(11): 118904.
[11] Epidemic spreading on a scale-free network with awareness
Lu Yan-Ling (鲁延玲), Jiang Guo-Ping (蒋国平), Song Yu-Rong (宋玉蓉). Chin. Phys. B, 2012, 21(10): 100207.
[12] Epidemic spreading on networks with vaccination
Shi Hong-Jing(史红静), Duan Zhi-Sheng(段志生), Chen Guan-Rong(陈关荣), and Li Rong(李嵘). Chin. Phys. B, 2009, 18(8): 3309-3317.
[13] Effect of incubation period on epidemic spreading in complex networks
Huang Wei(黄炜), Jiang Rui(姜锐), Hu Mao-Bin(胡茂彬), and Wu Qing-Song(吴清松). Chin. Phys. B, 2009, 18(4): 1306-1311.
[14] A cellular automata model of epidemics of a heterogeneous susceptibility
Jin Zhen (靳祯), Liu Quan-Xing (刘权兴). Chin. Phys. B, 2006, 15(6): 1248-1256.
[15] Dynamic properties of epidemic spreading on finite size complex networks
Li Ying (李旲), Liu Yang (刘旸), Shan Xiu-Ming (山秀明), Ren Yong (任勇), Jiao Jian (焦健), Qiu Ben (仇贲). Chin. Phys. B, 2005, 14(11): 2153-2157.
No Suggested Reading articles found!