Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator
Pi-Ye Zhou(周丕烨)1,2, Xiao-Hui Li(李晓慧)1,2, and Yuan Wan(万源)1,2,3,†
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract We theoretically study the effect of a uniform orbital magnetic field on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator without spin-orbit coupling. Through symmetry analysis and microscopic calculation, we show that the optical spin wave mode at the Brillouin zone center can acquire a small orbital magnetic moment, although it exhibits no magnetic moment from the Zeeman coupling. Our results are potentially applicable to intercalated van der Waals materials and twisted double-bilayer graphene.
(Intrinsic properties of magnetically ordered materials)
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403800), the National Natural Science Foundation of China (Grant Nos. 12250008 and 12188101), and the Project for Young Scientists in Basic Research (Grant No. YSBR-059). This work was performed in part at the Aspen Center for Physics, supported by the National Natural Science Foundation of China (Grant No. PHY- 2210452).
Corresponding Authors:
Yuan Wan
E-mail: yuan.wan@iphy.ac.cn
Cite this article:
Pi-Ye Zhou(周丕烨), Xiao-Hui Li(李晓慧), and Yuan Wan(万源) Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator 2025 Chin. Phys. B 34 067501
[1] Batista C D, Lin S Z, Hayami S and Kamiya Y 2016 Rep. Prog. Phys. 79 084504 [2] Chern G W 2015 SPIN 5 1540006 [3] Hayami S and Motome Y 2021 J. Phys.: Condens. Matter 33 443001 [4] Martin I and Batista C D 2008 Phys. Rev. Lett. 101 156402 [5] Akagi Y and Motome Y 2010 J. Phys. Soc. Jpn. 79 083711 [6] Kato Y, Martin I and Batista C D 2010 Phys. Rev. Lett. 105 266405 [7] Kumar S and van den Brink J 2010 Phys. Rev. Lett. 105 216405 [8] Azhar M and Mostovoy M 2017 Phys. Rev. Lett. 118 027203 [9] Park P, Kang Y G, Kim J, Lee K H, Noh H J, Han M J and Park J G 2022 npj Quantum Mater. 7 42 [10] Takagi H, Takagi R, Minami S, Nomoto T, Ohishi K, Suzuki M T, Yanagi Y, Hirayama M, Khanh N D, Karube K, Saito H, Hashizume D, Kiyanagi R, Tokura Y, Arita R, Nakajima T and Seki S 2023 Nat. Phys. 19 961 [11] Park P, Cho W, Kim C, An Y, Kang Y G, Avdeev M, Sibille R, Iida K, Kajimoto R, Lee K H, Ju W, Cho E J, Noh H J, Han M J, Zhang S S, Batista C D and Park J G 2023 Nat. Commun. 14 8346 [12] Wilhelm P H, Lang T C, Scheurer M S and Läuchli A M 2023 SciPost Phys. 14 040 [13] Motrunich O I 2006 Phys. Rev. B 73 155115 [14] Brinkman W F and Elliott R J 1966 Proc. R. Soc. Lond. A 294 343 [15] Litvin D and Opechowski W 1974 Physica 76 538 [16] Jiang Y, Song Z, Zhu T, Fang Z, Weng H, Liu Z X, Yang J and Fang C 2024 Phys. Rev. X 14 031039 [17] Chen X, Ren J, Zhu Y, Yu Y, Zhang A, Liu P, Li J, Liu Y, Li C and Liu Q 2024 Phys. Rev. X 14 031038 [18] Xiao Z, Zhao J, Li Y, Shindou R and Song Z D 2024 Phys. Rev. X 14 031037 [19] Widom A 1982 Phys. Lett. A 90 474 [20] Streda P and Smrcka L 1983 J. Phys. C: Solid State Phys. 16 L895 [21] Halilov S V, Eschrig H, Perlov A Y and Oppeneer P M 1998 Phys. Rev. B 58 293 [22] Niu Q and Kleinman L 1998 Phys. Rev. Lett. 80 2205 [23] Berry M V 1984 Proc. R. Soc. Lond. A 392 45 [24] Pancharatnam S 1956 Proc. Indian Acad. Sci. A 44 247
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.