Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067501    DOI: 10.1088/1674-1056/adca1f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator

Pi-Ye Zhou(周丕烨)1,2, Xiao-Hui Li(李晓慧)1,2, and Yuan Wan(万源)1,2,3,†
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We theoretically study the effect of a uniform orbital magnetic field on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator without spin-orbit coupling. Through symmetry analysis and microscopic calculation, we show that the optical spin wave mode at the Brillouin zone center can acquire a small orbital magnetic moment, although it exhibits no magnetic moment from the Zeeman coupling. Our results are potentially applicable to intercalated van der Waals materials and twisted double-bilayer graphene.
Keywords:  tetrahedral antiferromagnetic insulator      orbital magnetic field      spin waves  
Received:  19 March 2025      Revised:  03 April 2025      Accepted manuscript online:  08 April 2025
PACS:  75.30.Ds (Spin waves)  
  75.30.-m (Intrinsic properties of magnetically ordered materials)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403800), the National Natural Science Foundation of China (Grant Nos. 12250008 and 12188101), and the Project for Young Scientists in Basic Research (Grant No. YSBR-059). This work was performed in part at the Aspen Center for Physics, supported by the National Natural Science Foundation of China (Grant No. PHY- 2210452).
Corresponding Authors:  Yuan Wan     E-mail:  yuan.wan@iphy.ac.cn

Cite this article: 

Pi-Ye Zhou(周丕烨), Xiao-Hui Li(李晓慧), and Yuan Wan(万源) Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator 2025 Chin. Phys. B 34 067501

[1] Batista C D, Lin S Z, Hayami S and Kamiya Y 2016 Rep. Prog. Phys. 79 084504
[2] Chern G W 2015 SPIN 5 1540006
[3] Hayami S and Motome Y 2021 J. Phys.: Condens. Matter 33 443001
[4] Martin I and Batista C D 2008 Phys. Rev. Lett. 101 156402
[5] Akagi Y and Motome Y 2010 J. Phys. Soc. Jpn. 79 083711
[6] Kato Y, Martin I and Batista C D 2010 Phys. Rev. Lett. 105 266405
[7] Kumar S and van den Brink J 2010 Phys. Rev. Lett. 105 216405
[8] Azhar M and Mostovoy M 2017 Phys. Rev. Lett. 118 027203
[9] Park P, Kang Y G, Kim J, Lee K H, Noh H J, Han M J and Park J G 2022 npj Quantum Mater. 7 42
[10] Takagi H, Takagi R, Minami S, Nomoto T, Ohishi K, Suzuki M T, Yanagi Y, Hirayama M, Khanh N D, Karube K, Saito H, Hashizume D, Kiyanagi R, Tokura Y, Arita R, Nakajima T and Seki S 2023 Nat. Phys. 19 961
[11] Park P, Cho W, Kim C, An Y, Kang Y G, Avdeev M, Sibille R, Iida K, Kajimoto R, Lee K H, Ju W, Cho E J, Noh H J, Han M J, Zhang S S, Batista C D and Park J G 2023 Nat. Commun. 14 8346
[12] Wilhelm P H, Lang T C, Scheurer M S and Läuchli A M 2023 SciPost Phys. 14 040
[13] Motrunich O I 2006 Phys. Rev. B 73 155115
[14] Brinkman W F and Elliott R J 1966 Proc. R. Soc. Lond. A 294 343
[15] Litvin D and Opechowski W 1974 Physica 76 538
[16] Jiang Y, Song Z, Zhu T, Fang Z, Weng H, Liu Z X, Yang J and Fang C 2024 Phys. Rev. X 14 031039
[17] Chen X, Ren J, Zhu Y, Yu Y, Zhang A, Liu P, Li J, Liu Y, Li C and Liu Q 2024 Phys. Rev. X 14 031038
[18] Xiao Z, Zhao J, Li Y, Shindou R and Song Z D 2024 Phys. Rev. X 14 031037
[19] Widom A 1982 Phys. Lett. A 90 474
[20] Streda P and Smrcka L 1983 J. Phys. C: Solid State Phys. 16 L895
[21] Halilov S V, Eschrig H, Perlov A Y and Oppeneer P M 1998 Phys. Rev. B 58 293
[22] Niu Q and Kleinman L 1998 Phys. Rev. Lett. 80 2205
[23] Berry M V 1984 Proc. R. Soc. Lond. A 392 45
[24] Pancharatnam S 1956 Proc. Indian Acad. Sci. A 44 247
[1] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[2] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[3] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[4] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[5] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[6] Angle-dependent spin waves in antidot bilayers
Hu Chun-Lian (胡春莲), Liao Leng (廖棱), Stamps R. Chin. Phys. B, 2014, 23(12): 127501.
[7] The phenomenon of even bulk modes variance in a ferromagnetic A--A bilayer system
Zhou Wen-Ping(周文平),Yun Guo-Hong(云国宏), and Liang Xi-Xia(梁希侠) . Chin. Phys. B, 2009, 18(12): 5496-5500.
No Suggested Reading articles found!