Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050202    DOI: 10.1088/1674-1056/adbd2a
GENERAL Prev   Next  

Study and application of solitary wave propagation at fractional order of time based on SPH method

Luyang Ma(马璐阳), Rahmatjan Imin(热合买提江·依明)†, and Azhar Halik(艾孜海尔·哈力克)
College of Mathematics and Systems Science, Xinjiang University, Urumqi 830017, China
Abstract  A meshless particle method based on the smoothed particle hydrodynamics (SPH) method is first proposed for the numerical prediction of physical phenomena of nonlinear solitary wave propagation and complex phenomena arising from the inelastic interactions of solitary waves. The method is a fully discrete implicit scheme. This method does not rely on a grid, avoids the need to solve for derivatives of kernel functions, and makes the calculation more convenient. Additionally, the unique solvability of the proposed implicit scheme is proved. To verify the effectiveness and flexibility of the proposed method, we apply it to solving various time fractional nonlinear Schrödinger equations (TF-NLSE) on both regular and irregular domains. This mainly includes general or coupled TF-NLSE with or without analytical solutions. Moreover, the proposed method is compared with the existing methods. Through examples, it has been verified that this method can effectively predict complex propagation phenomena generated by the collision of nonlinear solitary waves, such as the collapse phenomenon of solitary waves with increasing fractional-order parameters. Research results indicate that this method provides a new and effective meshless method for predicting the propagation of nonlinear solitary waves, which can better simulate TF-NLSE in complex domains.
Keywords:  Caputo fractional derivative      meshless particle method      nonlinear Schrödinger equation      irregular regions  
Received:  02 October 2024      Revised:  31 December 2024      Accepted manuscript online:  06 March 2025
PACS:  02.30.Jr (Partial differential equations)  
  02.60.-x (Numerical approximation and analysis)  
  02.70.-c (Computational techniques; simulations)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2024D01C44).
Corresponding Authors:  Rahmatjan Imin     E-mail:  rahmatjanim@xju.edu.cn

Cite this article: 

Luyang Ma(马璐阳), Rahmatjan Imin(热合买提江·依明), and Azhar Halik(艾孜海尔·哈力克) Study and application of solitary wave propagation at fractional order of time based on SPH method 2025 Chin. Phys. B 34 050202

[1] Wu Q and Huang J H 2016 Fractional Calculus (Beijing: Tsinghua University Press) (in Chinese)
[2] Dehghan M, Manafian J and Saadatmandi A 2010 Numer. Meth. Partial Differ. Equ. 24 448
[3] Rialland G 2024 Nonlinear Anal. 241 113474
[4] Zhou S and Cheng X 2010 Math. Comput. Simulat. 80 2362
[5] Wang X M, Zhang L L and Hu X X 2020 Optik 219 164989
[6] Diethelm K and Ford N J 2002 J. Math. Anal. Appl. 265 229
[7] Sun Z Z and Gao G H 2020 Fractional Differential Equations: Finite Difference Methods (Germany: De Gruyter)
[8] Laskin N 2002 Phys. Rev. E 66 056108
[9] Naber M 2004 J. Math. Phys. 45 3339
[10] Amore P, Fernández F M and Hofmann C P 2010 J. Math. Phys. 51 122101
[11] Khoso A I, Katbar M N and Akram U 2023 Quantum Rep. 5 546
[12] Shi L and Zhou X 2022 Results Phys. 42 105967
[13] Mohebbi A, Abbaszadeh M and Dehghan M 2013 Eng. Anal. Bound. Elem. 37 475
[14] Laskin N 2000 Phys. Rev. E 62 3135
[15] Mao Z P and Karniadakis G E 2018 SIAM J. Numeri. Anal. 56 24
[16] Shivanian E and Jafarabadi A 2017 Numer. Methods Partial Differ. Equ. 33 1043
[17] Alrebdi T A, Arshed S and Raza N 2023 Results Phys. 52 106809
[18] Wang X M, Zhang L L and Hu X X 2020 Optik 219 164989
[19] Ma W X 2022 Chin. Phys. Lett. 39 100201
[20] Eskar R, Feng X and Kasim E 2020 Adv. Differ. Equ. 2020 492
[21] Chen X, Di Y and Duan J 2018 Appl. Math. Lett. 84 160
[22] Dehghan M and Mirzaei D 2008 Eng. Anal. Bound. Elem. 32 747
[23] Liaqat M I and Akgül A 2022 Chaos, Solitons and Fractals 162 1043
[24] Mardani A, HooshmandaslMR and HeydariMH 2017 Comput. Math. Appl. 75 122
[25] Xu Y, Sun H G and Zhang Y 2023 Comput. Math. Appl. 142 107
[26] Wong A Y and Cheung P Y 1984 Phys. Rev. Lett. 52 1222
[27] Klein C, Sparber C and Markowich P 2014 Proceedings of the Royal Society A: Math., Phys. Eng. Sci. 470 20140364
[28] Chen M, Zeng S and Lu D 2018 Phys. Rev. E 98 022211
[29] Yao Y, Yi H and Zhang X 2023 Chin. Phys. Lett. 40 100503
[30] Qin Z 2022 Chin. Phys. Lett. 39 010501
[31] Zhou S and Cheng X 2010 Math. Comput. Simulat. 80 2362
[32] Wei L, Zhang X and Kumar S 2012 Comput. Math. Appl. 64 2603
[33] Hu H Z, Chen Y P and Zhou J W 2024 J. Comput. Math. 42 1124
[34] Jiang T, Jiang R R and Huang J J 2021 Chin. Phys. B 30 194
[35] Abbaszadeh M, Azis M I and Dehghan M 2024 Eng. Anal. Bound. Elem. 169 105932
[36] Heydari M H, Hosseininia M and Atangana A 2020 Eng. Anal. Bound. Elem. 120 166
[37] Okposo N I, Veeresha P and Okposo E N 2022 Chin. J. Phys. 77 965
[38] Jiang T, Liu Y H, Li Q, Ren J L and Wang D S 2024 Comput. Phys. Commun. 296 109023
[39] Abbas K, Yuma S, Chun Lee Antonio G, Hitoshi G and Javier B 2024 Comput. Part. Mech. 11 1055
[40] Xu X Y, Cheng J, Peng S and Yu P 2024 Eng. Anal. Bound. Elem. 158 473
[41] Hosseini K, Hincal E and Obi O A 2023 Opt. Quant. Electron. 55 599
[42] Li Y, Jiang R R and Jiang T 2022 Appl. Math. Mech. 43 1016 (in Chinese)
[43] Mokhtari R and Mostajeran F 2020 Commun. Appl. Math. Comput. 2 1
[44] Feng D Y and Imin R 2023 Results Appl. Math. 17 100355
[45] Yang X F, Peng S L and Liu M B 2014 Appl. Math. Model. 38 3822
[46] Hadhoud A R, Rageh A A M and Radwan T 2022 Fractal Fract. 6 127
[47] Wang T, Guo B and Xu Q 2013 J. Comput. Phys. 243 382
[48] Sun Z and Wu X 2006 Appl. Numer. Math. 56 193
[49] Gao G, Sun Z and Zhang H 2014 J. Comput. Phys. 259 33
[50] Liu G R and LiuMB 2003 Smoothed particle hydrodynamics: a meshfree particle method (Singapore: World Scientific)
[1] Dynamical analysis and localized waves of the n-component nonlinear Schrödinger equation with higher-order effects
Yu Lou(娄瑜) and Guoan Xu(许国安). Chin. Phys. B, 2025, 34(3): 030201.
[2] A fractional-order improved FitzHugh-Nagumo neuron model
Pushpendra Kumar and Vedat Suat Erturk. Chin. Phys. B, 2025, 34(1): 018704.
[3] Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrödinger equation with sextic operator under non-zero boundary conditions
Luyao Zhang(张路瑶) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090207.
[4] Bright soliton dynamics for resonant nonlinear Schrödinger equation with generalized cubic-quintic nonlinearity
Keyu Bao(鲍柯宇), Xiaogang Tang(唐晓刚), and Ying Wang(王颖). Chin. Phys. B, 2024, 33(12): 124203.
[5] Effective regulation of the interaction process among three optical solitons
Houhui Yi(伊厚会), Xiaofeng Li(李晓凤), Junling Zhang(张俊玲), Xin Zhang(张鑫), and Guoli Ma(马国利). Chin. Phys. B, 2024, 33(10): 100502.
[6] Breather and its interaction with rogue wave of the coupled modified nonlinear Schrödinger equation
Ming Wang(王明), Tao Xu(徐涛), Guoliang He(何国亮), and Yu Tian(田雨). Chin. Phys. B, 2023, 32(5): 050503.
[7] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[8] Nondegenerate solitons of the (2+1)-dimensional coupled nonlinear Schrödinger equations with variable coefficients in nonlinear optical fibers
Wei Yang(杨薇), Xueping Cheng(程雪苹), Guiming Jin(金桂鸣), and Jianan Wang(王佳楠). Chin. Phys. B, 2023, 32(12): 120202.
[9] Analysis of anomalous transport with temporal fractional transport equations in a bounded domain
Kaibang Wu(吴凯邦), Jiayan Liu(刘嘉言), Shijie Liu(刘仕洁), Feng Wang(王丰), Lai Wei(魏来), Qibin Luan(栾其斌), and Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2023, 32(11): 110502.
[10] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[11] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[12] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[13] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[14] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[15] Fractional cyclic integrals and Routh equations of fractional Lagrange system with combined Caputo derivatives
Wang Lin-Li (王琳莉), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(12): 124501.
No Suggested Reading articles found!