|
|
A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region |
Tao Jiang(蒋涛)1,†, Rong-Rong Jiang(蒋戎戎)1, Jin-Jing Huang(黄金晶)1, Jiu Ding(丁玖)2, and Jin-Lian Ren(任金莲)1 |
1 School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China; 2 Department of Mathematics, University of Southern Mississippi, Hattiesburg, MS 39406-5045, USA |
|
|
Abstract A local refinement hybrid scheme (LRCSPH-FDM) is proposed to solve the two-dimensional (2D) time fractional nonlinear Schrödinger equation (TF-NLSE) in regularly or irregularly shaped domains, and extends the scheme to predict the quantum mechanical properties governed by the time fractional Gross-Pitaevskii equation (TF-GPE) with the rotating Bose-Einstein condensate. It is the first application of the purely meshless method to the TF-NLSE to the author's knowledge. The proposed LRCSPH-FDM (which is based on a local refinement corrected SPH method combined with FDM) is derived by using the finite difference scheme (FDM) to discretize the Caputo TF term, followed by using a corrected smoothed particle hydrodynamics (CSPH) scheme continuously without using the kernel derivative to approximate the spatial derivatives. Meanwhile, the local refinement technique is adopted to reduce the numerical error. In numerical simulations, the complex irregular geometry is considered to show the flexibility of the purely meshless particle method and its advantages over the grid-based method. The numerical convergence rate and merits of the proposed LRCSPH-FDM are illustrated by solving several 1D/2D (where 1D stands for one-dimensional) analytical TF-NLSEs in a rectangular region (with regular or irregular particle distribution) or in a region with irregular geometry. The proposed method is then used to predict the complex nonlinear dynamic characters of 2D TF-NLSE/TF-GPE in a complex irregular domain, and the results from the posed method are compared with those from the FDM. All the numerical results show that the present method has a good accuracy and flexible application capacity for the TF-NLSE/GPE in regions of a complex shape.
|
Received: 08 July 2020
Revised: 03 September 2020
Accepted manuscript online: 14 October 2020
|
PACS:
|
02.60.-x
|
(Numerical approximation and analysis)
|
|
02.70.-c
|
(Computational techniques; simulations)
|
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11501495, 51779215, and 11672259), the Postdoctoral Science Foundation of China (Grant Nos. 2015M581869 and 2015T80589), and the Jiangsu Government Scholarship for Overseas Studies, China (Grant No. JS-2017-227). |
Corresponding Authors:
†Corresponding author. E-mail: jtrjl_2007@126.com
|
Cite this article:
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲) A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region 2021 Chin. Phys. B 30 020202
|
1 Lavoie J L, Osler T J and Tremblay R 1976 SIAM Rev. 18 240 2 Podlubny I Fractional Differential Equations (New York: Academic Press) 3 Mao Z P and Karniadakis G E 2018 SIAM J. Numer. Anal. 56 24 4 Hu J H, Wang J G and Nie Y F 2019 Chin. Phys. B 28 100201 5 Narahari Achar B N, Yale Bradley T and Hanneken John W 2013 Adv. Math. Phys. 2013 290216 6 Ray S S 2016 Chin. Phys. B 25 040204 7 Alzaidy J F 2013 Amer. J. Math. Anal. 1 14 8 Zhang J, Zhang X.D and Yang B H 2018 Appl. Math. Comput. 335 305 9 Deng W H 2009 SIAM J. Numer. Anal. 47 204 10 Wang H Q 2005 Appl. Math. Comput. 170 17 11 Bao W.Z, Jaksch D and Markowich P A 2003 J. Comput. Phys. 187 318 12 Bao W Z and Wang H Q 2005 Commun. Math. Sci. 3 57 13 Sulem C and Sulem P L 1990 Appl. Math. Sci.(New York: Spinger) 14 Bao W Z and Wang H.Q 2006 J. Comput. Phys. 217 612 15 EI-Danaf T S, Ramadan M A and Abd Alaal F E I 2012 Nonlinear Dyn. 67 619 16 Wilson J P 2019 Comput. Phys. Commun. 235 279 17 Laskin N 2000 Phys. Lett. A 268 298 18 Laskin N 2002 Phys. Rev. E 66 056108 19 Naber M 2004 J. Math. Phys. 45 3339 20 Iomin A 2011 Chaos, Solitons & Fractals 44 348 21 Chen M, Guo Q, Lu D Q and Hu W 2019 Commun. Nonlinear Sci. Numer. Simulat. 71 73 22 Dong J P and Xu M Y 2008 J. Math. Anal. Appl. 344 1005 23 Li M Z, Ding X H and Xu Q 2018 Adv. Differ. Equ. 318 1687 24 Hicdurmaz B and Ashyralyey A 2016 Comput. Math. Appl. 72 1703 25 Chen X L, Di Y N, Duan J Q and Li D F 2018 Appl. Math. Lett. 84 160 26 Ozkan G 2015 Chin. Phys. B 24 100201 27 Edeki S O, Akinilabi G O and Adeosun S A Mohebbi A and Dehghan M 2009 J. Comput. Appl. Math. 225 124 29 Abdel-Salam E A B, Yousif E A and EI-Aasser M A 2016 Rep. Math. Phys. 77 19 30 Xu Y and Shu C W 2005 J. Comput. Phys. 205 72 31 Aboelenen T 2018 Commun. Nonlinear Sci. Numer. Simulat. 54 428 32 Shivanian E and Jafarabadi A 2017 Numer. Methods Partial Differ. Equ. 33 1043 33 Chen R Y, Nie L R and Chen C Y 2018 Chaos 28 053115 34 Azzouzi F, Triki H and Grelu P H 2015 Appl. Math. Model. 39 1300 35 Herzallah M A E and Gepreel K A 2012 Appl. Math. Model. 36 5678 36 Bhrawy A H and Abdelkawy M A 2015 J. Comput. Phys. 294 462 37 Zhang J W, Li D F and Antoine X 2019 Commun. Comput. Phys. 25 218 38 Khan N Alam, Jamil M and Ara Asmat 2012 ISRN Math. Phys. 2012 197068 39 Chen R Y, Tong L M and Nie L R 2017 Physica A 468 532 40 Lin Y M and Xu C J 2007 J. Comput. Phys. 225 1533 41 Gong Y Z, Wang Q, Wang Y S and Cai J X 2017 J. Comput. Phys. 328 354 42 Garrappa R, Moret I and Popolizio M 2015 J. Comput. Phys. 293 115 43 Zhuang P, Gu Y T, Liu F, Turner I and Yarlagadda P K D V 2011 Int. J. Numer. Methods Eng. 88 1346 44 Shivanian E 2015 Int. J. Numer. Methods Eng. 105 83 45 Basic J, Degiuli N and Ban D 2018 J. Comput. Phys. 354 269 46 Mohebbi A, Abbaszadeh M and Dehghan M 2013 Eng. Anal. Bound. Elem. 37 475 47 Liu G R and Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific) 48 Chen J K and Beraun J E 2000 Comput. Methods Appl. Mech. Eng. 190 225 49 Quinlan N J, Basa M and Lastiwka M 2016 Int. J. Numer. Methods Eng. 66 2064 50 Jiang T, Chen Z C, Lu W G, Yuan J Y and Wang D S 2018 Comput. Phys. Commun. 231 19 51 Jiang T, Huang J J, Lu L G and Ren J L 2019 Acta Phys. Sin. 68 090203 (in Chinese) 52 Li S F and Liu W K 2002 Appl. Mech. Rev. 55 1 53 Dehghan M, Abbaszadeh M and Mohebbi A 2014 Cmes-Comp. Model. Eng. 100 399 54 Tayebi A, Shekari Y and Heydari M H 2017 J. Comput. Phys. 340 655 55 Liu J M, Li X K and Hu X L 2019 J. Comput. Phys. 384 222 56 Liu M B and Liu G R 2010 Arch. Comput. Methods Eng. 17 25 57 Crespo A J C, Dominguez J M, Rogers B D and Gomez-Gesteira M 2015 Comput. Phys. Commun. 187 204 58 Sun P N, Colagrossi A, Marrone S and Zhang A M 2017 Comput. Meth. Appl. Mech. Eng. 315 25 59 Ren J L, Jiang T, Lu W G and Li G 2016 Comput. Phys. Commun. 205 87 60 Monaghan J J and Kocharyan A 1995 Comput. Phys. Commun. 87 225 61 Morris J P, Fox P J and Zhu Y 1997 J. Comput. Phys. 136 214 62 Jiang T, Lu L G and Lu W G 2014 Comput. Mech. 53 977 63 Yang X F, Peng S L and Liu M B 2014 Appl. Math. Model. 38 3822 64 Liu M B, Xie W P and Liu G R 2005 Appl. Math. Model. 29 1252 65 Zhang Z L and Liu M B 2018 Appl. Math. Model. 60 606 66 Gao G H, Sun Z Z and Zhang H W 2014 J. Comput. Phys. 259 33 67 Zhou X F, Wu C J and Guo G C 2018 Phys. Rev. Lett. 120 130402 68 Wang T C, Guo B L and Xu Q B 2013 J. Comput. Phys. 243 382 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|