Abstract The photophysical properties of fluorescent nucleobase analogs play a crucial role in nucleic acids detection and the investigation of their structural and functional characteristics. In this study, we computationally designed a series of quasi-intrinsic fluorescent probes according to natural guanine (G) for selectively identifying covalent N-acetylcytosine (4acC), a base that is highly correlated with active transcription and gene expression. This work aims to gain insight into the role of 4acC in biological regulation with minimal perturbation to the native DNA structure. The results indicate that these G-analogs possess extended -conjugation in comparison with the natural guanine, which could yield efficient fluorescence emission and red-shifted absorption. Especially, the 8-thienyl-2'-deoxyguanosine (ThG) exhibits the highest fluorescence intensity and avoids self-absorption on account of the large Stokes shifts (> 67 nm). What is more, the fluorescence of ThG is unaffected to base pairing with natural cytosine, while the obvious fluorescence quenching is observed by virtue of the excited state intermolecular charge transfer after pairing with 4acC, so it is supposed as a promising biosensor for monitoring the fluorescence changes in the absence or presence of the 4acC. Additionally, the impact of binding deoxyribose on photophysical properties is explored to guarantee the biological applicability of the bright G-analogs in real environment.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274265 and 11804195) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022MA006).
Xiaolin Chen(陈晓琳), Xixi Cui(崔习习), Yongkang Lyu(吕永康), Chenyang Zhang(张晨阳), Changzhe Zhang(张常哲), and Qingtian Meng(孟庆田) Photophysical property of fluorescent guanine analogs for selectively recognizing acetylated cytosine: A theoretical study 2025 Chin. Phys. B 34 053102
[1] Chen K, Zhao B X S M and He C A 2016 N Cell Chem. Biol. 23 74 [2] Lyu Y K, Chen S, Zhao Y, Yuan H X, Zhang C Y, Zhang C Z and Meng Q T 2024 Phys. Chem. Chem. Phys. 26 12552 [3] Zhao L Y, Song J H, Liu Y B, Song C X and Yi C Q 2020 Protein Cell 11 792 [4] Tsai K, Vasudevan A A J, Campos C M, Emery A, Swanstrom R and Cullen B R 2020 Cell Host Microbe 28 306 [5] Hao H J, Liu W C, Miao Y J, Ma L, Yu B C, Liu L S, Yang C J, Zhang K, Chen Z, Yang JW, Zheng Z H, Zhang B, Deng F, Gong P, Yuan J H, Hu Z L and Guan W X 2022 Nucleic Acids Res. 50 9339 [6] Stern L and Schulman L H 1987 J. Biol. Chem. 253 6132 [7] Kumbhar B V, Kamble A D and Sonawane K D 2013 Cell Biochem. Biophys. 66 797 [8] Yao F Y, Zhong F M, Jiang J Y, Cheng Y, Xu S, Liu J, Lin J, Zhang J, Li S Q, Li M Y, Xu Y M, Huang B and Wang X Z 2024 Genes Dis. 11 993 [9] Fu Y, Luo G Z, Chen K, Deng X, Yu M, Han D L, Hao Z Y, Liu J Z, Lu X Y, Doré L C, Weng X C, Ji Q J, Mets L and He C 2015 Cell 161 879 [10] Yang X, Yang Y, Sun B F, Chen Y S, Xu J W, Lai W Y, Li A, Wang X, Bhattarai D P, Xiao W, Sun H Y, Zhu Q, Ma H L, Adhikari S, Sun M, Hao Y J, Zhang B, Huang C M, Huang N, Jiang G B, Zhao Y L, Wang H L, Sun Y P and Yang Y G 2017 Cell Res. 27 606 [11] Greenberg M V C and Bourc’his D 2019 Nat. Rev. Mol. Cell Biol. 20 590 [12] Sas-Chen A, Thomas J M, Matzov D, Taoka M, Nance K D, Nir R, Bryson K M, Shachar R, Liman G L S, Burkhart B W, Gamage S T, Nobe Y, Briney C A, Levy M J, Fuchs R T, Robb G B, Hartmann J, Sharma S, Lin Q, Florens L, Washburn M P, Isobe T, Santangelo T J, Shalev-Benami M, Meier J L and Schwartz S 2022 Nature 583 638 [13] Arango D, Sturgill D, Alhusaini N, Dillman A A, Sweet T J, Hanson G, Hosogane M, Sinclair W R, Nanan K K, Mandler M D, Fox S D, Zengeya T T, Andresson T, Meier J L, Coller J and Oberdoerffer S 2018 Cell 175 1872 [14] Wang S, Xie H R, Mao F, Wang H Y, Wang S, Chen Z L, Zhang Y X, Xu Z H, Xing J M, Cui Z K, Gao X Q, Jin H M, Hua J, Xiong B and Wu Y F 2022 Genome Biol. 23 5 [15] Zhou J X, Wang X, Wei Z, Meng J and Huang D Y 2022 Mol. Ther. Nucl. Acids 30 337 [16] Chillar K, Yin Y P, Apostle A and Fang S Y 2023 Org. Biomol. Chem. 21 9005 [17] Zhang J R, Jia Y, Xing X Y, Qin M M, Wu Z B, Zhong Y Q, Liu L L, Sun S Q, Li P, Wang H Y and Zhao G J 2021 SmartMat 2 554 [18] Fang Y, Wang Q, Xiang C L, Liu G J and Li J J 2023 Biosensors 13 610 [19] Zhang L B and Bu Y X 2008 J. Phys. Chem. B 112 10723 [20] Dziuba D, Didier P, Ciaco S, Barth A, Seidel C A M and Mély Y 2021 Chem. Soc. Rev. 50 7062 [21] del Nogal A W, Füchtbauer A F, Bood M, Nilsson J R, Wranne M S, Sarangamath S, Pfeiffer P, Rajan V S, El-Sagheer A H, Dahlén A, Brown T, Grotli M and Wilhelmsson L M 2020 Nucleic Acids Res. 48 7640 [22] Karimi A, Wang K X, Basran K, Copp W and Luedtke N W 2023 Bioconjugate Chem. 34 972 [23] Zhao Y, Cui X X, Song Y Z, Zhang C Z and Meng Q T 2021 Spectrochim. Acta A 260 119926 [24] Duan L J, Zhang X, Zhao Y, Meng Q T and Zhang C Z 2023 Phys. Chem. Chem. Phys. 25 3859 [25] Fadock K L and Manderville R A 2017 ACS Omega 2 4955 [26] Saito Y, Taguchi H, Fujii S, Sawa T, Kida E, Kabuto C, Akaike T and Arimoto H 2008 Chem. Commun. 45 5984 [27] Valverde D, de Araujo A V S, Borin A C and Canuto S 2017 Phys. Chem. Chem. Phys. 19 29354 [28] Zhang L B,Wang M, Zheng M M and Kong X M 2019 Int. J. Quantum Chem. 119 e25870 [29] Zhang L B, Ren T Q, Tian J X, Yang X Q, Zhou L Z and Li X M 2013 J. Phys. Chem. B 117 3983 [30] Kasha M 1950 Discussions of the Faraday Society. 9 14 [31] Kumar A and Sevilla M D 2008 J. Am. Chem. Soc. 130 2130 [32] Qi Y T, Wang Y, Tang Z, Liu J Y, Hou Y M, Gao Z Q, Tian J and Fei X 2020 J. Mol. Liq. 314 113614 [33] Zhao G J, Yang Y F, Zhang C Y, Song Y Z and Li Y Q 2021 J. Lumin. 230 117741 [34] Becke A D 1993 J. Chem. Phys. 98 5648 [35] Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A and Grimme S 2017 Phys. Chem. Chem. Phys. 19 32184 [36] Zhan H B, Zhang H W, Jiang J J, Wang Y, Fei X and Tian J 2022 Chin. Phys. B 31 038201 [37] Zhong Y Q, Chen Y, Feng X, Sun Y, Cui S, Li X Z, Jin X N and Zhao G J 2020 J. Mol. Liq. 302 112562 [38] Zhao J F, Jin B and Tang Z 2022 Phys. Chem. Chem. Phys. 24 27660 [39] Su S Y, Liang X N and Fang H 2022 Chin. Phys. B 31 038202 [40] Mennucci B, Cances E and Tomasi J 1997 J. Phys. Chem. B 101 10506 [41] Tomasi J, Mennucci B and Cammi R 2005 Chem. Rev. 105 2999 [42] Yang Y F, Shi W, Chen Y P, Ma F C and Li Y Q 2021 J. Lumin. 229 117698 [43] Yang Y F, Yang L J, Ma F C, Li Y Q and Qiu Y 2023 Chin. Phys. B 32 057801 [44] Adamo C and Barone V 1999 J. Chem. Phys. 110 6158 [45] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A and Nakatsuji H 2016 Gaussian 16 Revision A. 03 (Gaussian Inc., Wallingford CT) [46] Liu Z Y, Lu T and Chen Q X 2020 Carbon 165 461 [47] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33 [48] Lu T and Chen F W 2012 J. Comput. Chem. 33 580 [49] Andrienko G A 2016 Chemcraft 1.8. http://www.chemcraftprog.com (accessed 08/10/2016) [50] Eid J, Fehr A, Gray J, et al. 2009 Science 323 133 [51] van Duijneveldt F B, van Duijne-veldt-vande Rijdt J G C M and van Lenthe J H 1994 Chem. Rev. 94 1873 [52] Seidu Y S, Roy H A and RodgersMT 2021 J. Phys. Chem. A 125 5939 [53] Green J A, Jouybari M Y, Aranda D, Improta R and Santoro F 2021 Molecules 26 1743 [54] Rankin K M, Sproviero M, Rankin K, Sharma P, Wetmore S D and Manderville R A 2012 J. Org. Chem. 77 10498
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.