Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 053102    DOI: 10.1088/1674-1056/adb8ba
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Photophysical property of fluorescent guanine analogs for selectively recognizing acetylated cytosine: A theoretical study

Xiaolin Chen(陈晓琳), Xixi Cui(崔习习), Yongkang Lyu(吕永康), Chenyang Zhang(张晨阳), Changzhe Zhang(张常哲)†, and Qingtian Meng(孟庆田)‡
School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  The photophysical properties of fluorescent nucleobase analogs play a crucial role in nucleic acids detection and the investigation of their structural and functional characteristics. In this study, we computationally designed a series of quasi-intrinsic fluorescent probes according to natural guanine (G) for selectively identifying covalent N4-acetylcytosine (4acC), a base that is highly correlated with active transcription and gene expression. This work aims to gain insight into the role of 4acC in biological regulation with minimal perturbation to the native DNA structure. The results indicate that these G-analogs possess extended π-conjugation in comparison with the natural guanine, which could yield efficient fluorescence emission and red-shifted absorption. Especially, the 8-thienyl-2'-deoxyguanosine (ThG) exhibits the highest fluorescence intensity and avoids self-absorption on account of the large Stokes shifts (> 67 nm). What is more, the fluorescence of ThG is unaffected to base pairing with natural cytosine, while the obvious fluorescence quenching is observed by virtue of the excited state intermolecular charge transfer after pairing with 4acC, so it is supposed as a promising biosensor for monitoring the fluorescence changes in the absence or presence of the 4acC. Additionally, the impact of binding deoxyribose on photophysical properties is explored to guarantee the biological applicability of the bright G-analogs in real environment.
Keywords:  guanine analog      base modification      fluorescence probe      density functional theory  
Received:  15 December 2024      Revised:  15 January 2025      Accepted manuscript online:  21 February 2025
PACS:  31.15.E (Density-functional theory)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
  34.70.+e (Charge transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274265 and 11804195) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022MA006).
Corresponding Authors:  Changzhe Zhang, Qingtian Meng     E-mail:  zhe852456@126.com;qtmeng@sdnu.edu.cn

Cite this article: 

Xiaolin Chen(陈晓琳), Xixi Cui(崔习习), Yongkang Lyu(吕永康), Chenyang Zhang(张晨阳), Changzhe Zhang(张常哲), and Qingtian Meng(孟庆田) Photophysical property of fluorescent guanine analogs for selectively recognizing acetylated cytosine: A theoretical study 2025 Chin. Phys. B 34 053102

[1] Chen K, Zhao B X S M and He C A 2016 N Cell Chem. Biol. 23 74
[2] Lyu Y K, Chen S, Zhao Y, Yuan H X, Zhang C Y, Zhang C Z and Meng Q T 2024 Phys. Chem. Chem. Phys. 26 12552
[3] Zhao L Y, Song J H, Liu Y B, Song C X and Yi C Q 2020 Protein Cell 11 792
[4] Tsai K, Vasudevan A A J, Campos C M, Emery A, Swanstrom R and Cullen B R 2020 Cell Host Microbe 28 306
[5] Hao H J, Liu W C, Miao Y J, Ma L, Yu B C, Liu L S, Yang C J, Zhang K, Chen Z, Yang JW, Zheng Z H, Zhang B, Deng F, Gong P, Yuan J H, Hu Z L and Guan W X 2022 Nucleic Acids Res. 50 9339
[6] Stern L and Schulman L H 1987 J. Biol. Chem. 253 6132
[7] Kumbhar B V, Kamble A D and Sonawane K D 2013 Cell Biochem. Biophys. 66 797
[8] Yao F Y, Zhong F M, Jiang J Y, Cheng Y, Xu S, Liu J, Lin J, Zhang J, Li S Q, Li M Y, Xu Y M, Huang B and Wang X Z 2024 Genes Dis. 11 993
[9] Fu Y, Luo G Z, Chen K, Deng X, Yu M, Han D L, Hao Z Y, Liu J Z, Lu X Y, Doré L C, Weng X C, Ji Q J, Mets L and He C 2015 Cell 161 879
[10] Yang X, Yang Y, Sun B F, Chen Y S, Xu J W, Lai W Y, Li A, Wang X, Bhattarai D P, Xiao W, Sun H Y, Zhu Q, Ma H L, Adhikari S, Sun M, Hao Y J, Zhang B, Huang C M, Huang N, Jiang G B, Zhao Y L, Wang H L, Sun Y P and Yang Y G 2017 Cell Res. 27 606
[11] Greenberg M V C and Bourc’his D 2019 Nat. Rev. Mol. Cell Biol. 20 590
[12] Sas-Chen A, Thomas J M, Matzov D, Taoka M, Nance K D, Nir R, Bryson K M, Shachar R, Liman G L S, Burkhart B W, Gamage S T, Nobe Y, Briney C A, Levy M J, Fuchs R T, Robb G B, Hartmann J, Sharma S, Lin Q, Florens L, Washburn M P, Isobe T, Santangelo T J, Shalev-Benami M, Meier J L and Schwartz S 2022 Nature 583 638
[13] Arango D, Sturgill D, Alhusaini N, Dillman A A, Sweet T J, Hanson G, Hosogane M, Sinclair W R, Nanan K K, Mandler M D, Fox S D, Zengeya T T, Andresson T, Meier J L, Coller J and Oberdoerffer S 2018 Cell 175 1872
[14] Wang S, Xie H R, Mao F, Wang H Y, Wang S, Chen Z L, Zhang Y X, Xu Z H, Xing J M, Cui Z K, Gao X Q, Jin H M, Hua J, Xiong B and Wu Y F 2022 Genome Biol. 23 5
[15] Zhou J X, Wang X, Wei Z, Meng J and Huang D Y 2022 Mol. Ther. Nucl. Acids 30 337
[16] Chillar K, Yin Y P, Apostle A and Fang S Y 2023 Org. Biomol. Chem. 21 9005
[17] Zhang J R, Jia Y, Xing X Y, Qin M M, Wu Z B, Zhong Y Q, Liu L L, Sun S Q, Li P, Wang H Y and Zhao G J 2021 SmartMat 2 554
[18] Fang Y, Wang Q, Xiang C L, Liu G J and Li J J 2023 Biosensors 13 610
[19] Zhang L B and Bu Y X 2008 J. Phys. Chem. B 112 10723
[20] Dziuba D, Didier P, Ciaco S, Barth A, Seidel C A M and Mély Y 2021 Chem. Soc. Rev. 50 7062
[21] del Nogal A W, Füchtbauer A F, Bood M, Nilsson J R, Wranne M S, Sarangamath S, Pfeiffer P, Rajan V S, El-Sagheer A H, Dahlén A, Brown T, Grotli M and Wilhelmsson L M 2020 Nucleic Acids Res. 48 7640
[22] Karimi A, Wang K X, Basran K, Copp W and Luedtke N W 2023 Bioconjugate Chem. 34 972
[23] Zhao Y, Cui X X, Song Y Z, Zhang C Z and Meng Q T 2021 Spectrochim. Acta A 260 119926
[24] Duan L J, Zhang X, Zhao Y, Meng Q T and Zhang C Z 2023 Phys. Chem. Chem. Phys. 25 3859
[25] Fadock K L and Manderville R A 2017 ACS Omega 2 4955
[26] Saito Y, Taguchi H, Fujii S, Sawa T, Kida E, Kabuto C, Akaike T and Arimoto H 2008 Chem. Commun. 45 5984
[27] Valverde D, de Araujo A V S, Borin A C and Canuto S 2017 Phys. Chem. Chem. Phys. 19 29354
[28] Zhang L B,Wang M, Zheng M M and Kong X M 2019 Int. J. Quantum Chem. 119 e25870
[29] Zhang L B, Ren T Q, Tian J X, Yang X Q, Zhou L Z and Li X M 2013 J. Phys. Chem. B 117 3983
[30] Kasha M 1950 Discussions of the Faraday Society. 9 14
[31] Kumar A and Sevilla M D 2008 J. Am. Chem. Soc. 130 2130
[32] Qi Y T, Wang Y, Tang Z, Liu J Y, Hou Y M, Gao Z Q, Tian J and Fei X 2020 J. Mol. Liq. 314 113614
[33] Zhao G J, Yang Y F, Zhang C Y, Song Y Z and Li Y Q 2021 J. Lumin. 230 117741
[34] Becke A D 1993 J. Chem. Phys. 98 5648
[35] Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A and Grimme S 2017 Phys. Chem. Chem. Phys. 19 32184
[36] Zhan H B, Zhang H W, Jiang J J, Wang Y, Fei X and Tian J 2022 Chin. Phys. B 31 038201
[37] Zhong Y Q, Chen Y, Feng X, Sun Y, Cui S, Li X Z, Jin X N and Zhao G J 2020 J. Mol. Liq. 302 112562
[38] Zhao J F, Jin B and Tang Z 2022 Phys. Chem. Chem. Phys. 24 27660
[39] Su S Y, Liang X N and Fang H 2022 Chin. Phys. B 31 038202
[40] Mennucci B, Cances E and Tomasi J 1997 J. Phys. Chem. B 101 10506
[41] Tomasi J, Mennucci B and Cammi R 2005 Chem. Rev. 105 2999
[42] Yang Y F, Shi W, Chen Y P, Ma F C and Li Y Q 2021 J. Lumin. 229 117698
[43] Yang Y F, Yang L J, Ma F C, Li Y Q and Qiu Y 2023 Chin. Phys. B 32 057801
[44] Adamo C and Barone V 1999 J. Chem. Phys. 110 6158
[45] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A and Nakatsuji H 2016 Gaussian 16 Revision A. 03 (Gaussian Inc., Wallingford CT)
[46] Liu Z Y, Lu T and Chen Q X 2020 Carbon 165 461
[47] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[48] Lu T and Chen F W 2012 J. Comput. Chem. 33 580
[49] Andrienko G A 2016 Chemcraft 1.8. http://www.chemcraftprog.com (accessed 08/10/2016)
[50] Eid J, Fehr A, Gray J, et al. 2009 Science 323 133
[51] van Duijneveldt F B, van Duijne-veldt-vande Rijdt J G C M and van Lenthe J H 1994 Chem. Rev. 94 1873
[52] Seidu Y S, Roy H A and RodgersMT 2021 J. Phys. Chem. A 125 5939
[53] Green J A, Jouybari M Y, Aranda D, Improta R and Santoro F 2021 Molecules 26 1743
[54] Rankin K M, Sproviero M, Rankin K, Sharma P, Wetmore S D and Manderville R A 2012 J. Org. Chem. 77 10498
[1] Modulating electronic properties of carbon nanotube via constructing one-dimensional vdW heterostructures
Wenqi Lv(吕雯祺), Weili Li(李伟立), Wei Ji(季威), and Yanning Zhang(张妍宁). Chin. Phys. B, 2025, 34(6): 067303.
[2] Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential
Yao-Yuan Zhang(章耀元), Meng-Qiu Long(龙孟秋), Sai-Jie Cheng(程赛杰), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(6): 067101.
[3] High-order harmonic generation of methane in an elliptically polarized field
Shu-Shan Zhou(周书山), Yu-Long Li(李玉龙), Zhi-Xue Zhao(赵志学), Man Xing(幸满), Nan Xu(许楠), Hao Wang(王浩), Jun Wang(王俊), Xi Zhao(赵曦), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2025, 34(6): 063202.
[4] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[5] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
[6] Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐). Chin. Phys. B, 2024, 33(9): 097103.
[7] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[8] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作). Chin. Phys. B, 2024, 33(6): 068402.
[9] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[10] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[11] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[12] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[13] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[14] Screening A-site ordered quadruple perovskites for alkaline hydrogen evolution reaction via unifying electronic configuration descriptor
Ning Sun(孙宁), Wenbo Li(李文博), Yang Qin(秦杨), Zhichuan Zheng(郑智钏), Bowen Zhang(张博文), Xiangjiang Dong(董祥江), Peng Wei(魏鹏), Yixiao Zhang(张艺潇), Xian He(何贤), Xinyu Xie(谢新煜), Kai Huang(黄凯), Lailei Wu(吴来磊), Ming Lei(雷鸣), Huiyang Gou(缑慧阳), and Runze Yu(于润泽). Chin. Phys. B, 2024, 33(12): 128101.
[15] Ab initio study of phase stability, elastic anisotropy, and minimum thermal conductivity of MnB2 in different crystal structures
Xiao-Fan Wang(王小凡), Yi-Xian Wang(王乙先), Zhuo Wang(王卓), Yu-Xuan Zhang(张宇轩), and Jian-Bing Gu(顾建兵). Chin. Phys. B, 2024, 33(12): 126103.
No Suggested Reading articles found!