Shear viscosity of an ultracold Fermi gas in the BCS-BEC crossover
Jing Min(闵靖)1,2, Xiangchuan Yan(严祥传)1, Da-Li Sun(孙大立)1,†, Lu Wang(王璐)1,2, Xin Xie(谢馨)1,2, Xizhi Wu(吴熙至)1,2, Shi-Guo Peng(彭世国)1, and Kaijun Jiang(江开军)1,3,‡
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Wuhan Institute of Quantum Technology, Wuhan 430206, China
Abstract We report on the measurement of shear viscosity in an ultracold Fermi gas with variable temperatures and tunable interactions. A quadrupole mode excitation in an isotropic harmonic trap is used to quantify the shear viscosity of the quantum gas within the hydrodynamic regime. The shear viscosity of the system as a function of temperature has been investigated, and the results closely align with calculations in the high-temperature limit utilizing a new definition of the cutoff radius. Through an adiabatic sweep across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover, we find that the minimum value of the shear viscosity, as a function of interaction strength, is significantly shifted toward the BEC side. Furthermore, the behavior of the shear viscosity is asymmetric on both sides of the location of the minimum.
Fund: Project supported by the National Key R&D Program (Grant No. 2022YFA1404102), the National Natural Science Foundation of China (Grant Nos. U23A2073, 12374250, and 12121004), Chinese Academy of Sciences (Grant No. YJKYYQ20170025), and Hubei Province (Grant No. 2021CFA027).
Jing Min(闵靖), Xiangchuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Xin Xie(谢馨), Xizhi Wu(吴熙至), Shi-Guo Peng(彭世国), and Kaijun Jiang(江开军) Shear viscosity of an ultracold Fermi gas in the BCS-BEC crossover 2025 Chin. Phys. B 34 053103
[1] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215 [2] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [3] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 [4] Rupak G and Schäfer T 2007 Phys. Rev. A 76 053607 [5] Cao C, Elliott E, Joseph J, Wu H, Petricka J, Schäfer T and Thomas J E 2011 Science 331 58 [6] Wlazłowski G, Magierski P and Drut J E 2012 Phys. Rev. Lett. 109 020406 [7] Guo H, Wulin D, Chien C C and Levin K 2011 Phys. Rev. Lett. 107 020403 [8] Bluhm M and Schaefer T 2016 Phys. Rev. Lett. 116 115301 [9] Bluhm M, Hou J and Schäfer T 2017 Phys. Rev. Lett. 119 065302 [10] Bruun G 2012 Phys. Rev. A 85 013636 [11] Joseph J, Elliott E and Thomas J 2015 Phys. Rev. Lett. 115 020401 [12] Kovtun P K, Son D T and Starinets A O 2005 Phys. Rev. Lett. 94 111601 [13] Cao C, Elliott E, Wu H and Thomas J 2011 New J. Phys. 13 075007 [14] Adams A, Carr L D, Schäfer T, Steinberg P and Thomas J E 2012 New J. Phys. 14 115009 [15] Elliott E, Joseph J and Thomas J 2014 Phys. Rev. Lett. 113 020406 [16] Wang X, Li X, Arakelyan I and Thomas J 2022 Phys. Rev. Lett. 128 090402 [17] Pitaevskii L and Stringari S 2016 Bose-Einstein Condensation and Superfluidity Vol. 164 (Oxford University Press) [18] Shi Z, Li Z, Wang P, Han W, Huang L, Meng Z, Chen L and Zhang J 2023 New J. Phys. 25 023032 [19] Stringari S 1996 Phys. Rev. Lett. 77 2360 [20] Wang L, Yan X, Min J, Sun D, Xie X, Peng S G, Zhan M and Jiang K 2024 Phys. Rev. Lett. 132 243403 [21] Chen Q, Stajic J and Levin K 2005 Phys. Rev. Lett. 95 260405 [22] Elliott E, Joseph J and Thomas J 2014 Phys. Rev. Lett. 112 040405 [23] Hu H, Minguzzi A, Liu X J and Tosi M 2004 Phys. Rev. Lett. 93 190403 [24] Heiselberg H 2004 Phys. Rev. Lett. 93 040402 [25] Son D 2007 Phys. Rev. Lett. 98 020604 [26] Escobedo M A, Mannarelli M and Manuel C 2009 Phys. Rev. A 79 063623 [27] Dusling K and Schäfer T 2013 Phys. Rev. Lett. 111 120603 [28] Kinast J, Turlapov A and Thomas J E 2005 Phys. Rev. Lett. 94 170404 [29] Cao C, Elliott E, Joseph J, Wu H, Petricka J, Schäfer T and Thomas J E 2011 Science 331 58 [30] Bruun G M and Smith H 2007 Phys. Rev. A 75 043612 [31] Enss T, Haussmann R and Zwerger W 2011 Annals of Physics 326 770 [32] Nishida Y 2019 Annals of Physics 410 167949 [33] Hofmann J 2020 Phys. Rev. A 101 013620 [34] Kavoulakis G, Pethick C J and Smith H 1998 Phys. Rev. A 57 2938 [35] Yan X C, Sun D L, Wang L, Min J, Peng S G and Jiang K J 2021 Chin. Phys. Lett. 38 056701 [36] Yan X C, Sun D L, Wang L, Min J, Peng S G and Jiang K J 2022 Chin. Phys. B 31 016701 [37] Riedl S, Sánchez Guajardo E, Kohstall C, Altmeyer A, Wright M, Denschlag J H, Grimm R, Bruun G and Smith H 2008 Phys. Rev. A 78 053609 [38] Turlapov A, Kinast J, Clancy B, Luo L, Joseph J and Thomas J 2008 Journal of Low Temperature Physics 150 567 [39] Thomas J, Kinast J and Turlapov A 2005 Phys. Rev. Lett. 95 120402 [40] Ku M J, Sommer A T, Cheuk L W and Zwierlein M W 2012 Science 335 563 [41] Altmeyer A, Riedl S, Wright M, Kohstall C, Denschlag J H and Grimm R 2007 Phys. Rev. A 76 033610 [42] Kagamihara D and Ohashi Y 2017 Journal of Low Temperature Physics 187 692
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.