Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞)1,2, Mingxuan Jiang(蒋明璇)3, Ning Gao(高宁)4, Yangchun Chen(陈阳春)2, Wangyu Hu(胡望宇)2,†, and Hiuqiu Deng(邓辉球)3,‡
1 School of Physics, Suqian University, Suqian 223800, China; 2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China; 3 School of Physics and Electronics, Hunan University, Changsha 410082, China; 4 Institute of Frontier and Interdisciplinarity Science, Shandong University, Qingdao 266237, China
Abstract Using molecular dynamics methods, simulations of collision cascades in polycrystalline tungsten (W) have been conducted in this study, including different primary-knock-on atom (PKA) directions, grain sizes, and PKA energies between 1 keV and 150 keV. The results indicate that a smaller grain size leads to more defects forming in grain boundary regions during cascade processes. The impact of high-energy PKA may cause a certain degree of distortion of the grain boundaries, which has a higher probability in systems with smaller grain sizes and becomes more pronounced as the PKA energy increases. The direction of PKA can affect the formation and diffusion pathways of defects. When the PKA direction is perpendicular to the grain boundary, defects preferentially form near the grain boundary regions; by contrast, defects are more inclined to form in the interior of the grains. These results are of great significance for comprehending the changes in the performance of polycrystalline W under the high-energy fusion environments and can provide theoretical guidance for further optimization and application of W-based plasma materials.
(Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)
Fund: Project supported by the National MCF Energy Research and Development Program of China (Grant No. 2018YFE0308101), the National Key Research and Development Program of China (Grant No. 2018YFB0704000), the Suqian Science and Technology Program (Grant No. K202337), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 23KJD490001).
Corresponding Authors:
Wangyu Hu, Hiuqiu Deng
E-mail: wyuhu@hnu.edu.cn;hqdeng@hnu.edu.cn
Cite this article:
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球) Molecular dynamics simulations of collision cascades in polycrystalline tungsten 2025 Chin. Phys. B 34 046103
[1] Zhuang G, Li G Q, Li J,Wan Y X, Liu Y,Wang X L, Song Y T, Chan V, Yang Q W, Wan B N, Duan X R, Fu P and Xiao B J 2019 Nucl. Fusion 59 112010 [2] Linsmeier Ch, Rieth M, Aktaa J, Chikada T, Hoffmann A, Hoffmann J, Houben A, Kurishita H, Jin X, Li M, Litnovsky A, Matsuo S, von Müller A, Nikolic V, Palacios T, Pippan R, Qu D, Reiser J, Riesch J, Shikama T, Stieglitz R, Weber T, Wurster S, You J H and Zhou Z 2017 Nucl. Fusion 57 092007 [3] Knaster J, Moeslang A and Muroga T 2016 Nat. Phys. 12 424 [4] Wittlich K, Hirai T, Compan J, Klimov N, Linke J, Loarte A, Merola M, Pintsuk G, Podkovyrov V, Singheiser L and Zhitlukhin A 2009 Fusion Eng. Des. 84 1982 [5] Wang J, Li C, Yuan Y, Greuner H, Cheng L and Lu G H 2018 Nucl. Fusion 58 096001 [6] Li X, Wang Y, Zhang Y, Xu Y, Li X, Wang X, Fang Q, Wu X and Liu C S 2022 J. Nucl. Mater. 563 153637 [7] Ipatova I, Harrison R W, Donnelly S E, Rushton M J D, Middleburgh S C and Jimenez-Melero E 2019 J. Nucl. Mater. 526 151730 [8] Yi X, Arakawa K, Du Y, Ferroni F, HanW, Liu P andWan F 2019 Nucl. Mater. Energy 18 93 [9] Qiu R, Chen Y, Liu L, Liu Z, Gao N, Hu W and Deng H 2021 J. Nucl. Mater. 556 153162 [10] Jiang L, Li M, Fu B, Cui J and Hou Q 2024 Chin. Phys. B 33 036103 [11] Plimpton S 1995 J. Comput. Phys. 117 1 [12] Setyawan W, Nandipati G, Roche K J, Heinisch H L, Wirth B D and Kurtz R J 2015 J. Nucl. Mater. 462 329 [13] Liu L, Qiu R, Chen Y, Jiang M, Gao N, Huang B, Gao F, Hu W and Deng H 2023 J. Nucl. Mater. 580 154415 [14] Fu J, Chen Y, Fang J, Gao N, Hu W, Jiang C, Zhou H B, Lu G H, Gao F and Deng H 2019 J. Nucl. Mater. 524 9 [15] Zhang C G, Zhou W H, Li Y G, Zeng Z and Ju X 2015 J. Nucl. Mater. 458 138 [16] Levo E, Granberg F, Utt D, Albe K, Nordlund K and Djurabekova F 2019 J. Mater. Res. 34 854 [17] Gao F, Chen D, Hu W and Weber W J 2010 Phys. Rev. B 81 184101 [18] Samaras M, Derlet P M, Van Swygenhoven H and Victoria M 2003 J. Nucl. Mater. 323 213 [19] Ma P W, Mason D R, Van Boxel S and Dudarev S L 2024 Phys. Rev. Mater. 8 083601 [20] Du J 2009 in AIP Conference Proceedings: American Institute of Physics 1099 981 [21] Park N Y, Cha P R, Kim Y C, Seok H K, Han S H, Lee S C, Cho S and Jung H 2009 Met. Mater. Int. 15 447 [22] Hu X, Koyanagi T, Fukuda M, Kumar N K, Snead L L, Wirth B D and Katoh Y 2016 J. Nucl. Mater. 480 235 [23] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635 [24] Lin Y, Yang T, Lang L, Shan C, Deng H, Hu W and Gao F 2020 Acta Mater. 196 133 [25] Shan C, Lang L, Yang T, Lin Y, Gao F, Deng H and Hu W 2020 Comp. Mater. Sci. 177 109555 [26] Liu L, Gao N, Chen Y, Qiu R, Hu W, Gao F and Deng H 2021 Phys. Rev. Mater. 5 093605 [27] Xia Y, Wang Z, Wang L, Chen Y, Liu Z, Wang Q, Wu L and Deng H 2022 Metals 12 763 [28] Peng Q, Meng F, Yang Y, Lu C, Deng H, Wang L, De S and Gao F 2018 Nat. Commun. 9 1 [29] Yu Y, Shu X, Liu Y, Niu L, Jin S, Gao F and Lu G H 2015 Sci. China-Phys. Mech. 58 1 [30] Li X, Liu W, Xu Y, Liu C S, Pan B C, Liang Y, Fang Q F, Chen J L, Luo G N, Lu G H and Wang Z 2016 Acta Mater. 109 115 [31] Li X, Liu W, Xu Y, Liu C S, Pan B C, Liang Y, Fang Q F, Chen J L, Luo G N, Lu G H and Wang Z 2016 Data Brief 7 798 [32] Chen Y, Li Y H, Gao N, Zhou H B, Hu W, Lu G H, Gao F and Deng H 2018 J. Nucl. Mater. 502 141 [33] Liu L, Chen Y, Gao N, HuW, Xiao S, Gao F and Deng H 2020 Comput. Mater. Sci. 173 109412 [34] Chen Y, Fang J, Liu L, HuW, Jiang C, Gao N, Zhou H B, Lu G H, Gao F and Deng H 2019 J. Nucl. Mater. 522 200 [35] Liu L, Li X, Chen Y, HuW, Luo G N, Gao F and Deng H 2020 Tungsten 2 3 [36] Liu L, Chen Y, Gao N, Liu Z, Gao F, Hu W and Deng H 2022 J. Nucl. Mater. 561 153543 [37] Ziegler J F and Biersack J P 1985 The Stopping and Range of Ions in Matter (New York: Pergamon) 6 93 [38] Nordlund K and Averback R S 1997 Phys. Rev. B 56 2421 [39] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950 [40] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012 [41] Bai X M, Voter A F, Hoagland R G, Nastasi M and Uberuaga B P 2010 Science 327 1631 [42] Tschopp M A, Horstemeyer M F, Gao F, Sun X and Khaleel M 2011 Scripta Mater. 64 908 [43] Samaras M, Derlet P M, Van Swygenhoven H and Victoria M 2002 Phys. Rev. Lett. 88 125505 [44] Liu L, Chen Y, Qiu R, Hu W and Deng H 2021 Atomic Energy Science and Technology 55 8 [45] Björkas C, Nordlund K and Dudarev S 2009 Nucl. Instrum. Meth. B 267 3204 [46] Juslin N, Jansson V and Nordlund K 2010 Philos. Mag. 90 3581 [47] Fu B, Xu B, Lai W, Yuan Y, Xu H, Li C, Ji Y and Liu W 2013 J. Nucl. Mater. 441 24
Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.