Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046103    DOI: 10.1088/1674-1056/adb410
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics simulations of collision cascades in polycrystalline tungsten

Lixia Liu(刘丽霞)1,2, Mingxuan Jiang(蒋明璇)3, Ning Gao(高宁)4, Yangchun Chen(陈阳春)2, Wangyu Hu(胡望宇)2,†, and Hiuqiu Deng(邓辉球)3,‡
1 School of Physics, Suqian University, Suqian 223800, China;
2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
3 School of Physics and Electronics, Hunan University, Changsha 410082, China;
4 Institute of Frontier and Interdisciplinarity Science, Shandong University, Qingdao 266237, China
Abstract  Using molecular dynamics methods, simulations of collision cascades in polycrystalline tungsten (W) have been conducted in this study, including different primary-knock-on atom (PKA) directions, grain sizes, and PKA energies between 1 keV and 150 keV. The results indicate that a smaller grain size leads to more defects forming in grain boundary regions during cascade processes. The impact of high-energy PKA may cause a certain degree of distortion of the grain boundaries, which has a higher probability in systems with smaller grain sizes and becomes more pronounced as the PKA energy increases. The direction of PKA can affect the formation and diffusion pathways of defects. When the PKA direction is perpendicular to the grain boundary, defects preferentially form near the grain boundary regions; by contrast, defects are more inclined to form in the interior of the grains. These results are of great significance for comprehending the changes in the performance of polycrystalline W under the high-energy fusion environments and can provide theoretical guidance for further optimization and application of W-based plasma materials.
Keywords:  collision cascades      molecular dynamics simulations      tungsten      polycrystalline  
Received:  09 December 2024      Revised:  26 January 2025      Accepted manuscript online:  08 February 2025
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.Rx (Nanocrystalline materials)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Fund: Project supported by the National MCF Energy Research and Development Program of China (Grant No. 2018YFE0308101), the National Key Research and Development Program of China (Grant No. 2018YFB0704000), the Suqian Science and Technology Program (Grant No. K202337), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 23KJD490001).
Corresponding Authors:  Wangyu Hu, Hiuqiu Deng     E-mail:  wyuhu@hnu.edu.cn;hqdeng@hnu.edu.cn

Cite this article: 

Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球) Molecular dynamics simulations of collision cascades in polycrystalline tungsten 2025 Chin. Phys. B 34 046103

[1] Zhuang G, Li G Q, Li J,Wan Y X, Liu Y,Wang X L, Song Y T, Chan V, Yang Q W, Wan B N, Duan X R, Fu P and Xiao B J 2019 Nucl. Fusion 59 112010
[2] Linsmeier Ch, Rieth M, Aktaa J, Chikada T, Hoffmann A, Hoffmann J, Houben A, Kurishita H, Jin X, Li M, Litnovsky A, Matsuo S, von Müller A, Nikolic V, Palacios T, Pippan R, Qu D, Reiser J, Riesch J, Shikama T, Stieglitz R, Weber T, Wurster S, You J H and Zhou Z 2017 Nucl. Fusion 57 092007
[3] Knaster J, Moeslang A and Muroga T 2016 Nat. Phys. 12 424
[4] Wittlich K, Hirai T, Compan J, Klimov N, Linke J, Loarte A, Merola M, Pintsuk G, Podkovyrov V, Singheiser L and Zhitlukhin A 2009 Fusion Eng. Des. 84 1982
[5] Wang J, Li C, Yuan Y, Greuner H, Cheng L and Lu G H 2018 Nucl. Fusion 58 096001
[6] Li X, Wang Y, Zhang Y, Xu Y, Li X, Wang X, Fang Q, Wu X and Liu C S 2022 J. Nucl. Mater. 563 153637
[7] Ipatova I, Harrison R W, Donnelly S E, Rushton M J D, Middleburgh S C and Jimenez-Melero E 2019 J. Nucl. Mater. 526 151730
[8] Yi X, Arakawa K, Du Y, Ferroni F, HanW, Liu P andWan F 2019 Nucl. Mater. Energy 18 93
[9] Qiu R, Chen Y, Liu L, Liu Z, Gao N, Hu W and Deng H 2021 J. Nucl. Mater. 556 153162
[10] Jiang L, Li M, Fu B, Cui J and Hou Q 2024 Chin. Phys. B 33 036103
[11] Plimpton S 1995 J. Comput. Phys. 117 1
[12] Setyawan W, Nandipati G, Roche K J, Heinisch H L, Wirth B D and Kurtz R J 2015 J. Nucl. Mater. 462 329
[13] Liu L, Qiu R, Chen Y, Jiang M, Gao N, Huang B, Gao F, Hu W and Deng H 2023 J. Nucl. Mater. 580 154415
[14] Fu J, Chen Y, Fang J, Gao N, Hu W, Jiang C, Zhou H B, Lu G H, Gao F and Deng H 2019 J. Nucl. Mater. 524 9
[15] Zhang C G, Zhou W H, Li Y G, Zeng Z and Ju X 2015 J. Nucl. Mater. 458 138
[16] Levo E, Granberg F, Utt D, Albe K, Nordlund K and Djurabekova F 2019 J. Mater. Res. 34 854
[17] Gao F, Chen D, Hu W and Weber W J 2010 Phys. Rev. B 81 184101
[18] Samaras M, Derlet P M, Van Swygenhoven H and Victoria M 2003 J. Nucl. Mater. 323 213
[19] Ma P W, Mason D R, Van Boxel S and Dudarev S L 2024 Phys. Rev. Mater. 8 083601
[20] Du J 2009 in AIP Conference Proceedings: American Institute of Physics 1099 981
[21] Park N Y, Cha P R, Kim Y C, Seok H K, Han S H, Lee S C, Cho S and Jung H 2009 Met. Mater. Int. 15 447
[22] Hu X, Koyanagi T, Fukuda M, Kumar N K, Snead L L, Wirth B D and Katoh Y 2016 J. Nucl. Mater. 480 235
[23] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
[24] Lin Y, Yang T, Lang L, Shan C, Deng H, Hu W and Gao F 2020 Acta Mater. 196 133
[25] Shan C, Lang L, Yang T, Lin Y, Gao F, Deng H and Hu W 2020 Comp. Mater. Sci. 177 109555
[26] Liu L, Gao N, Chen Y, Qiu R, Hu W, Gao F and Deng H 2021 Phys. Rev. Mater. 5 093605
[27] Xia Y, Wang Z, Wang L, Chen Y, Liu Z, Wang Q, Wu L and Deng H 2022 Metals 12 763
[28] Peng Q, Meng F, Yang Y, Lu C, Deng H, Wang L, De S and Gao F 2018 Nat. Commun. 9 1
[29] Yu Y, Shu X, Liu Y, Niu L, Jin S, Gao F and Lu G H 2015 Sci. China-Phys. Mech. 58 1
[30] Li X, Liu W, Xu Y, Liu C S, Pan B C, Liang Y, Fang Q F, Chen J L, Luo G N, Lu G H and Wang Z 2016 Acta Mater. 109 115
[31] Li X, Liu W, Xu Y, Liu C S, Pan B C, Liang Y, Fang Q F, Chen J L, Luo G N, Lu G H and Wang Z 2016 Data Brief 7 798
[32] Chen Y, Li Y H, Gao N, Zhou H B, Hu W, Lu G H, Gao F and Deng H 2018 J. Nucl. Mater. 502 141
[33] Liu L, Chen Y, Gao N, HuW, Xiao S, Gao F and Deng H 2020 Comput. Mater. Sci. 173 109412
[34] Chen Y, Fang J, Liu L, HuW, Jiang C, Gao N, Zhou H B, Lu G H, Gao F and Deng H 2019 J. Nucl. Mater. 522 200
[35] Liu L, Li X, Chen Y, HuW, Luo G N, Gao F and Deng H 2020 Tungsten 2 3
[36] Liu L, Chen Y, Gao N, Liu Z, Gao F, Hu W and Deng H 2022 J. Nucl. Mater. 561 153543
[37] Ziegler J F and Biersack J P 1985 The Stopping and Range of Ions in Matter (New York: Pergamon) 6 93
[38] Nordlund K and Averback R S 1997 Phys. Rev. B 56 2421
[39] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[40] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012
[41] Bai X M, Voter A F, Hoagland R G, Nastasi M and Uberuaga B P 2010 Science 327 1631
[42] Tschopp M A, Horstemeyer M F, Gao F, Sun X and Khaleel M 2011 Scripta Mater. 64 908
[43] Samaras M, Derlet P M, Van Swygenhoven H and Victoria M 2002 Phys. Rev. Lett. 88 125505
[44] Liu L, Chen Y, Qiu R, Hu W and Deng H 2021 Atomic Energy Science and Technology 55 8
[45] Björkas C, Nordlund K and Dudarev S 2009 Nucl. Instrum. Meth. B 267 3204
[46] Juslin N, Jansson V and Nordlund K 2010 Philos. Mag. 90 3581
[47] Fu B, Xu B, Lai W, Yuan Y, Xu H, Li C, Ji Y and Liu W 2013 J. Nucl. Mater. 441 24
[1] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[2] Quantitative analysis of laser-generated ultrasonic wave characteristics and their correlation with grain size in polycrystalline materials
Zhaowen Xu(徐兆文), Xue Bai(白雪), Jian Ma(马健), Zhuangzhuang Wan(万壮壮), and Chaoqun Wang(王超群). Chin. Phys. B, 2024, 33(8): 087801.
[3] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[4] Theoretical investigation of electron-impact ionization of W8+ ion
Shiping Zhang(张世平), Fangjun Zhang(张芳军), Denghong Zhang(张登红), Xiaobin Ding(丁晓彬), Jun Jiang(蒋军), Luyou Xie(颉录有), Yulong Ma(马玉龙), Maijuan Li(李麦娟), Marek Sikorski, and Chenzhong Dong(董晨钟). Chin. Phys. B, 2024, 33(3): 033401.
[5] Direct observation of shock-induced phase transformation in polycrystalline iron via in situ x-ray diffraction
Fan Zhang(张帆), Jia-Qin Dong(董佳钦), Zhi-Yong Xie(谢志勇), Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Rui-Rong Wang(王瑞荣), Jun Xiong(熊俊), Guo Jia(贾果), Zhi-Heng Fang(方智恒), Wei Wang(王伟), Da-Wu Xiao(肖大武), An-Le Lei(雷安乐), Jie Chen(陈洁), and Xiu-Guang Huang(黄秀光). Chin. Phys. B, 2024, 33(10): 106101.
[6] Electron-impact ionization of W9+ and W10+
Runjia Bao(鲍润家), Junkui Wei(魏军奎), Lei Chen(陈雷), Bowen Li(李博文), and Ximeng Chen(陈熙萌). Chin. Phys. B, 2023, 32(6): 063401.
[7] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[8] Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein
Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜). Chin. Phys. B, 2023, 32(12): 128703.
[9] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[10] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[11] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[12] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[13] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[14] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[15] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
No Suggested Reading articles found!