Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046102    DOI: 10.1088/1674-1056/adb272
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal

Jiawei Hu(胡佳玮)1,2,3,†, Yanghao Meng(孟养浩)3,4,†, He Zhang(张赫)3,4, Wei Zhong(钟韦)5, Hang Zhai(翟航)3,6, Xiaohui Yu(于晓辉)3,4,7,‡, Binbin Yue(岳彬彬)5,§, and Fang Hong(洪芳)3,4,7,¶
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 10019, China;
5 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China;
6 State Key Laboratory of Superhard Materials, International Center for Computational Method and Software, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China;
7 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Lead chalcogenides represent a significant class of materials that exhibit intriguing physical phenomena, including remarkable thermoelectric properties and superconductivity. In this study, we present a comprehensive investigation on the superconductivity of PbSe single crystal under high pressure. The signature of superconducting (SC) transition starts to appear at 7.2 K under 16.5 GPa. Upon further compression, the SC temperature (Tc) decreases, and it is reduced to 3.5 K at 45.0 GPa. The negative pressure dependent behavior of Tc is consistent with the trend of Tc-P relations observed in other lead chalcogenides. The highest Tc is 8.0 K observed at 20.5 GPa during decompression process, which is also the highest record among all other PbSe derivatives, such as doped samples, superlattices, and so on. The phase boundaries of the structural and electronic transitions are well defined by Raman spectroscopy, and then phase diagrams are plotted for both compression and decompression processes. This work corrects the previous claim of positive pressure dependence of Tc in PbSe and provides clear phase diagrams for intrinsic superconductivity in PbSe under pressure.
Keywords:  superconductivity      high-pressure electrical transport      Raman spectroscopy      phase diagrams  
Received:  10 January 2025      Revised:  03 February 2025      Accepted manuscript online:  05 February 2025
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  74.62.Fj (Effects of pressure)  
  73.61.-r (Electrical properties of specific thin films)  
  74.25.nd (Raman and optical spectroscopy)  
  74.25.Dw (Superconductivity phase diagrams)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12374050, 12004014, U1930401, and 12375304), the National Key R&D Program of China (Grant Nos. 2021YFA1400300 and 2023YFA1608900), and the Major Program of the National Natural Science Foundation of China (Grant No. 22090041).
Corresponding Authors:  Xiaohui Yu, Binbin Yue, Fang Hong     E-mail:  ;yuxh@iphy.ac.cn;yuebb@hpstar.ac.cn;hongfang@iphy.ac.cn

Cite this article: 

Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳) Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal 2025 Chin. Phys. B 34 046102

[1] Chen Z W, Ge B H, Li W, Lin S Q, Shen J W, Chang Y J, Hanus R, Snyder G J and Pei Y Z 2017 Nat. Commun. 8 13828
[2] Sun J C, Zhang Y, Fan Y T, Tang X F and Tan G J 2022 J. Chem. Eng. 431 133699
[3] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[4] Li J F, Liu W S, Zhao L D and Zhou M 2010 NPG Asia Mater. 2 152
[5] Ekuma C E, Singh D J, Moreno J and Jarrell M 2012 Phys. Rev. B 85 085205
[6] Zemel J N, Jensen J D and Schoolar R B 1965 Phys. Rev. 140 A330
[7] Phuphachong T, Assaf B A, Volobuev V V, Bauer G, Springholz G, De Vaulchier L A and Guldner Y 2017 Crystals 7 29
[8] Aminorroaya Yamini S, Patterson V and Santos R 2017 ACS Omega 2 3417
[9] Wrasse E O and Schmidt T M 2014 Nano Lett. 14 5717
[10] Kim Y, Kane C, Mele E and Rappe A M 2015 Phys. Rev. Lett. 115 086802
[11] Barone P, Rauch T C V, Di Sante D, Henk J, Mertig I and Picozzi S 2013 Phys. Rev. B 88 045207
[12] Liang T, Gibson Q, Xiong J, Hirschberger M, Koduvayur S P, Cava R J and Ong N P 2013 Nat. Commun. 4 2696
[13] Liang T, Kushwaha S, Kim J, Gibson Q, Lin J, Kioussis N, Cava R J and Ong N P 2017 Sci. Adv. 3 e1602510
[14] Matsushita Y, Wianecki P A, Sommer A T, Geballe T H and Fisher I R 2006 Phys. Rev. B 74 134512
[15] Fogel N Y, Buchstab E I, Bomze Y V, Yuzephovich O I, Mikhailov M Y, Sipatov A Y, Pashitskii E A, Shekhter R I and Jonson M 2006 Phys. Rev. B 73 161306
[16] Fogel N Y, Buchstab E I, Bomze Y V, Yuzephovich O I, Sipatov A Y, Pashitskii E A, Danilov A, Langer V, Shekhter R I and Jonson M 2002 Phys. Rev. B 66 174513
[17] Agassi D and Chu T K 1990 Phys. Stat. Sol. (b) 160 601
[18] Fogel N Y, Pokhila A S, Bomze Y V, Sipatov A Y, Fedorenko A I and Shekhter R I 2001 Phys. Rev. Lett. 86 512
[19] Ovsyannikov S V, Shchennikov V V, Manakov A Y, Likhacheva A Y, Ponosov Y S, Mogilenskikh V E, Vokhmyanin A P, Ancharov A I and Skipetrov E P 2009 Phys. Stat. Sol. (b) 246 615
[20] Wang S M, Zang C P, Wang Y K, Wang L P, Zhang J Z, Childs C, Ge H, Xu H W, Chen H Y, He D W and Zhao Y S 2015 Inorg. Chem. 54 4981
[21] Chattopadhyay T, Werner A, Von Schnering H G and Pannetier J 1984 Rev. Phys. Appl. 19 807
[22] Ovsyannikov S V, Shchennikov V V, Manakov A Y, Likhacheva A Y, Berger I F, Ancharov A I and Sheromov M A 2007 Phys. Stat. Sol. (b) 244 279
[23] Chattopadhyay T, Von Schnering H G, Grosshans W A and Holzapfel W B 1986 Physica B&C 139 356
[24] Rousse G, Klotz S, Saitta A M, Rodriguez-Carvajal J, McMahon M I, Couzinet B and Mezouar M 2005 Phys. Rev. B 71 224116
[25] Bencherif Y, Boukra A, Zaoui A and Ferhat M 2011 Mater. Chem. Phys. 126 707
[26] Fujii Y, Kitamura K, Onodera A and Yamada Y 1984 Solid State Commun. 49 135
[27] Li Y, Lin C, Li H, Li X and Liu J 2013 High Pressure Res. 33 713
[28] Li Y, Li G, Lin C, Li X and Liu J 2014 J. Appl. Phys. 116 053502
[29] Li Y, Lin C, Xu J, Li G, Li X and Liu J 2014 AIP Adv. 4 127112
[30] Zhang H, Zhong W, Meng Y H, Yue B B, Yu X H, Wang J T and Hong F 2023 Phys. Rev. B 107 174502
[31] Brandt N B, Gitsu D V, Popovich N S, Sidorov V I and Chudinov S M 1975 JETP Lett. 22 104
[32] Chen L C, Chen P Q, Li W J, Zhang Q, Struzhkin V V, Goncharov A F, Ren Z and Chen X J 2021 Phys. Rev. B 103 214516
[33] Chen L C, Yu H, Wang X Y, Zhang Q, Struzhkin V V and Chen X J 2022 Phys. Rev. B 105 174503
[34] Zolotavin P and Guyot-Sionnest P 2012 ACS Nano 6 8094
[35] Yuzephovich O I, MikhailovMY, Bengus S V, Aladyshkin A Y, Pestov E, Nozdrin Y N, Sipatov A Y, Buchstab E and Fogel N Y 2008 Low Temp. Phys. 34 985
[36] Pei C Y, Zhu P, Li B T, Zhao Y, Gao L L, Li C H, Zhu S H, Zhang Q H, Ying T P, Gu L, Gao B, Gou H Y, Yao Y S, Sun J, Liu H Y, Chen Y L, Wang Z W, Yao Y G and Qi Y P 2023 Sci. China Mater. 66 2822
[37] Song C L, Ma X C and Xue Q K. 2020 MRS Bull. 45 366
[38] Hong F, Yang L X, Shan P F, Yang P T, Liu Z Y, Sun J P, Yin Y Y, Yu X H, Cheng J G and Zhao Z X 2020 Chin. Phys. Lett. 37 107401
[39] Yue B B, Zhong W, Deng W, Wen T, Wang Y G, Yin Y Y, Shan P F, Wang J T, Yu X H and Hong F 2023 J. Am. Chem. Soc. 145 1301
[40] Hong F, Shan P F, Yang L X, Yue B B, Yang P T, Liu Z Y, Sun J P, Dai J H, Yu H, Yin Y Y, Yu X H, Cheng J G and Zhao Z X 2022 Mater. Today Phys. 22 100596
[41] Mao H K, Xu J A and Bell P M 1986 J. Geophys. Res.: Solid Earth 91 4673
[42] Allgaier R S and Scanlon W W 1958 Phys. Rev. 111 1029
[43] Jiang Y Y, Pei C Y, Wang Q, Wu J F, Zhang L L, Xiong C and Qi Y P 2024 Chin. Phys. B 33 126105
[44] Gurevich A 2003 Phys. Rev. B 67 184515
[45] Ovsyannikov S V, Ponosov Y S, Shchennikov V V and Mogilenskikh V E. 2004 Phys. Stat. Sol. (c) 1 3110
[46] Shchennikov V, Ovsyannikov S and Derevskov A Y 2002 Phys. Solid State 44 1845
[47] Ovsyannikov S V, Shchennikov V V, Popova S V and Derevskov A Y 2003 Phys. Stat. Sol. (b) 235 521
[1] Stokes/anti-Stokes Raman spectroscopy of Al0.86Ga0.14N semiconductor alloy
Yuru Lin(林玉茹), Yu Li(李宇), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), Ruiang Guo(郭睿昂), Yangbin Wang(王扬斌), Qiwei Hu(胡启威), and Li Lei(雷力). Chin. Phys. B, 2025, 34(5): 057802.
[2] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田) and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[3] Superconductivity in titanium probed by AC magnetic susceptibility to 120 Gpa
Jing Song(宋静), Hongyu Liu(刘红玉), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(4): 047403.
[4] Regulation of superconductivity in Nb thin films induced by interstitial oxygen atoms
Yuchuan Liu(刘钰川), Ming Yang(杨明), Yun Fan(范云), Zulei Xu(徐祖磊), Yu Wu(吴禹), Yixin Liu(刘以鑫), Wei Peng(彭炜), Gang Mu(牟刚), and Zhi-Rong Lin(林志荣). Chin. Phys. B, 2025, 34(4): 047401.
[5] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[6] Exploring Lifshitz transition and superconductivity in 3R-NbS2 under pressure
Kun Chen(陈坤), Xindeng Lv(吕心邓), Simin Li(李思敏), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037403.
[7] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[8] Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe
Tengdong Zhang(张腾东), Rui Fan(樊睿), Yan Gao(高炎), Yanling Wu(吴艳玲), Xiaodan Xu(徐晓丹), Dao-Xin Yao(姚道新), and Jun Li(李军). Chin. Phys. B, 2025, 34(2): 027403.
[9] Intermediately coupled type-II superconductivity in a La-based kagome metal La3Al
Yingpeng Yu(于英鹏), Zhaolong Liu(刘兆龙), Zhaoxu Chen(陈昭旭), Qi Li(李琦), Yulong Wang(王玉龙), Xuhui Wang(王旭辉), Chunsheng Gong(龚春生), Zhaotong Zhuang(庄照通), Bin-Bin Ruan(阮彬彬), Huifen Ren(任会芬), Peijie Sun(孙培杰), Jian-Gang Guo(郭建刚), and Shifeng Jin(金士锋). Chin. Phys. B, 2025, 34(1): 017401.
[10] Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge
Tao Liu(刘涛), Miao-Ling Lin(林妙玲), Da Meng(孟达), Xin Cong(从鑫), Qiang Kan(阚强), Jiang-Bin Wu(吴江滨), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2025, 34(1): 017801.
[11] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[12] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[13] Observation of parabolic electron bands on superconductor LaRu2As2
Xingtai Zhou(周兴泰), Geng Li(李更), Lulu Pan(潘禄禄), Zichao Chen(陈子超), Meng Li(李萌), Yanhao Shi(时延昊), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077401.
[14] Optimal parameter space for stabilizing the ferroelectric phase of Hf0.5Zr0.5O2 thin films under strain and electric fields
Lvjin Wang(王侣锦), Cong Wang(王聪), Linwei Zhou(周霖蔚), Xieyu Zhou(周谐宇), Yuhao Pan(潘宇浩), Xing Wu(吴幸), and Wei Ji(季威). Chin. Phys. B, 2024, 33(7): 076803.
[15] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
No Suggested Reading articles found!