Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮)1,2,3,†, Yanghao Meng(孟养浩)3,4,†, He Zhang(张赫)3,4, Wei Zhong(钟韦)5, Hang Zhai(翟航)3,6, Xiaohui Yu(于晓辉)3,4,7,‡, Binbin Yue(岳彬彬)5,§, and Fang Hong(洪芳)3,4,7,¶
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 10019, China; 5 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; 6 State Key Laboratory of Superhard Materials, International Center for Computational Method and Software, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China; 7 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract Lead chalcogenides represent a significant class of materials that exhibit intriguing physical phenomena, including remarkable thermoelectric properties and superconductivity. In this study, we present a comprehensive investigation on the superconductivity of PbSe single crystal under high pressure. The signature of superconducting (SC) transition starts to appear at 7.2 K under 16.5 GPa. Upon further compression, the SC temperature () decreases, and it is reduced to 3.5 K at 45.0 GPa. The negative pressure dependent behavior of is consistent with the trend of - relations observed in other lead chalcogenides. The highest is 8.0 K observed at 20.5 GPa during decompression process, which is also the highest record among all other PbSe derivatives, such as doped samples, superlattices, and so on. The phase boundaries of the structural and electronic transitions are well defined by Raman spectroscopy, and then phase diagrams are plotted for both compression and decompression processes. This work corrects the previous claim of positive pressure dependence of in PbSe and provides clear phase diagrams for intrinsic superconductivity in PbSe under pressure.
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12374050, 12004014, U1930401, and 12375304), the National Key R&D Program of China (Grant Nos. 2021YFA1400300 and 2023YFA1608900), and the Major Program of the National Natural Science Foundation of China (Grant No. 22090041).
Corresponding Authors:
Xiaohui Yu, Binbin Yue, Fang Hong
E-mail: ;yuxh@iphy.ac.cn;yuebb@hpstar.ac.cn;hongfang@iphy.ac.cn
Cite this article:
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳) Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal 2025 Chin. Phys. B 34 046102
[1] Chen Z W, Ge B H, Li W, Lin S Q, Shen J W, Chang Y J, Hanus R, Snyder G J and Pei Y Z 2017 Nat. Commun. 8 13828 [2] Sun J C, Zhang Y, Fan Y T, Tang X F and Tan G J 2022 J. Chem. Eng. 431 133699 [3] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414 [4] Li J F, Liu W S, Zhao L D and Zhou M 2010 NPG Asia Mater. 2 152 [5] Ekuma C E, Singh D J, Moreno J and Jarrell M 2012 Phys. Rev. B 85 085205 [6] Zemel J N, Jensen J D and Schoolar R B 1965 Phys. Rev. 140 A330 [7] Phuphachong T, Assaf B A, Volobuev V V, Bauer G, Springholz G, De Vaulchier L A and Guldner Y 2017 Crystals 7 29 [8] Aminorroaya Yamini S, Patterson V and Santos R 2017 ACS Omega 2 3417 [9] Wrasse E O and Schmidt T M 2014 Nano Lett. 14 5717 [10] Kim Y, Kane C, Mele E and Rappe A M 2015 Phys. Rev. Lett. 115 086802 [11] Barone P, Rauch T C V, Di Sante D, Henk J, Mertig I and Picozzi S 2013 Phys. Rev. B 88 045207 [12] Liang T, Gibson Q, Xiong J, Hirschberger M, Koduvayur S P, Cava R J and Ong N P 2013 Nat. Commun. 4 2696 [13] Liang T, Kushwaha S, Kim J, Gibson Q, Lin J, Kioussis N, Cava R J and Ong N P 2017 Sci. Adv. 3 e1602510 [14] Matsushita Y, Wianecki P A, Sommer A T, Geballe T H and Fisher I R 2006 Phys. Rev. B 74 134512 [15] Fogel N Y, Buchstab E I, Bomze Y V, Yuzephovich O I, Mikhailov M Y, Sipatov A Y, Pashitskii E A, Shekhter R I and Jonson M 2006 Phys. Rev. B 73 161306 [16] Fogel N Y, Buchstab E I, Bomze Y V, Yuzephovich O I, Sipatov A Y, Pashitskii E A, Danilov A, Langer V, Shekhter R I and Jonson M 2002 Phys. Rev. B 66 174513 [17] Agassi D and Chu T K 1990 Phys. Stat. Sol. (b) 160 601 [18] Fogel N Y, Pokhila A S, Bomze Y V, Sipatov A Y, Fedorenko A I and Shekhter R I 2001 Phys. Rev. Lett. 86 512 [19] Ovsyannikov S V, Shchennikov V V, Manakov A Y, Likhacheva A Y, Ponosov Y S, Mogilenskikh V E, Vokhmyanin A P, Ancharov A I and Skipetrov E P 2009 Phys. Stat. Sol. (b) 246 615 [20] Wang S M, Zang C P, Wang Y K, Wang L P, Zhang J Z, Childs C, Ge H, Xu H W, Chen H Y, He D W and Zhao Y S 2015 Inorg. Chem. 54 4981 [21] Chattopadhyay T, Werner A, Von Schnering H G and Pannetier J 1984 Rev. Phys. Appl. 19 807 [22] Ovsyannikov S V, Shchennikov V V, Manakov A Y, Likhacheva A Y, Berger I F, Ancharov A I and Sheromov M A 2007 Phys. Stat. Sol. (b) 244 279 [23] Chattopadhyay T, Von Schnering H G, Grosshans W A and Holzapfel W B 1986 Physica B&C 139 356 [24] Rousse G, Klotz S, Saitta A M, Rodriguez-Carvajal J, McMahon M I, Couzinet B and Mezouar M 2005 Phys. Rev. B 71 224116 [25] Bencherif Y, Boukra A, Zaoui A and Ferhat M 2011 Mater. Chem. Phys. 126 707 [26] Fujii Y, Kitamura K, Onodera A and Yamada Y 1984 Solid State Commun. 49 135 [27] Li Y, Lin C, Li H, Li X and Liu J 2013 High Pressure Res. 33 713 [28] Li Y, Li G, Lin C, Li X and Liu J 2014 J. Appl. Phys. 116 053502 [29] Li Y, Lin C, Xu J, Li G, Li X and Liu J 2014 AIP Adv. 4 127112 [30] Zhang H, Zhong W, Meng Y H, Yue B B, Yu X H, Wang J T and Hong F 2023 Phys. Rev. B 107 174502 [31] Brandt N B, Gitsu D V, Popovich N S, Sidorov V I and Chudinov S M 1975 JETP Lett. 22 104 [32] Chen L C, Chen P Q, Li W J, Zhang Q, Struzhkin V V, Goncharov A F, Ren Z and Chen X J 2021 Phys. Rev. B 103 214516 [33] Chen L C, Yu H, Wang X Y, Zhang Q, Struzhkin V V and Chen X J 2022 Phys. Rev. B 105 174503 [34] Zolotavin P and Guyot-Sionnest P 2012 ACS Nano 6 8094 [35] Yuzephovich O I, MikhailovMY, Bengus S V, Aladyshkin A Y, Pestov E, Nozdrin Y N, Sipatov A Y, Buchstab E and Fogel N Y 2008 Low Temp. Phys. 34 985 [36] Pei C Y, Zhu P, Li B T, Zhao Y, Gao L L, Li C H, Zhu S H, Zhang Q H, Ying T P, Gu L, Gao B, Gou H Y, Yao Y S, Sun J, Liu H Y, Chen Y L, Wang Z W, Yao Y G and Qi Y P 2023 Sci. China Mater. 66 2822 [37] Song C L, Ma X C and Xue Q K. 2020 MRS Bull. 45 366 [38] Hong F, Yang L X, Shan P F, Yang P T, Liu Z Y, Sun J P, Yin Y Y, Yu X H, Cheng J G and Zhao Z X 2020 Chin. Phys. Lett. 37 107401 [39] Yue B B, Zhong W, Deng W, Wen T, Wang Y G, Yin Y Y, Shan P F, Wang J T, Yu X H and Hong F 2023 J. Am. Chem. Soc. 145 1301 [40] Hong F, Shan P F, Yang L X, Yue B B, Yang P T, Liu Z Y, Sun J P, Dai J H, Yu H, Yin Y Y, Yu X H, Cheng J G and Zhao Z X 2022 Mater. Today Phys. 22 100596 [41] Mao H K, Xu J A and Bell P M 1986 J. Geophys. Res.: Solid Earth 91 4673 [42] Allgaier R S and Scanlon W W 1958 Phys. Rev. 111 1029 [43] Jiang Y Y, Pei C Y, Wang Q, Wu J F, Zhang L L, Xiong C and Qi Y P 2024 Chin. Phys. B 33 126105 [44] Gurevich A 2003 Phys. Rev. B 67 184515 [45] Ovsyannikov S V, Ponosov Y S, Shchennikov V V and Mogilenskikh V E. 2004 Phys. Stat. Sol. (c) 1 3110 [46] Shchennikov V, Ovsyannikov S and Derevskov A Y 2002 Phys. Solid State 44 1845 [47] Ovsyannikov S V, Shchennikov V V, Popova S V and Derevskov A Y 2003 Phys. Stat. Sol. (b) 235 521
Superconductivity in kagome metal ThRu3Si2 Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.