Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 044202    DOI: 10.1088/1674-1056/adb266
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Coherent feedback ground-state cooling of mechanical resonators assisted by a quantum well

Qinghong Liao(廖庆洪)1,2,†, Songyun Ouyang(欧阳嵩沄)1, Shaoping Cheng(程绍平)1, and Yiping Cheng(程依萍)1
1 Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China;
2 Chongqing Research Institute of NCU, Nanchang University, Chongqing 402660, China
Abstract  We theoretically investigate a cooling scheme assisted by a quantum well (QW) and coherent feedback within a hybrid optomechanical system. Although the exciton mode in the QW and the mechanical resonator (MR) are initially uncoupled, their interaction via the microcavity field leads to an indirect exciton-mode-mechanical-mode coupling. The coherent feedback loop is applied by feeding back a fraction of the output field of the cavity through a controllable beam splitter to the cavity's input mirror. It is shown that the cooling capability is enhanced by effectively suppressing the Stokes process through coupling with the QW. Furthermore, the effect of the anti-Stokes process is enhanced through the application of the coherent feedback loop. This particular system configuration enables cooling of the mechanical resonator even in the unresolved sideband regime (USR). This study has some important guiding significance in the field of quantum information processing.
Keywords:  ground-state cooling      quantum well      coherent feedback      optomechanical system  
Received:  28 November 2024      Revised:  16 January 2025      Accepted manuscript online:  05 February 2025
PACS:  37.10.De (Atom cooling methods)  
  37.10.Gh (Atom traps and guides)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 62061028 and 62461035), the Key Project of Natural Science Foundation of Jiangxi Province (Grant No. 20232ACB202003), the Finance Science and Technology Special “contract system” Project of Nanchang University Jiangxi Province (Grant No. ZBG20230418015), the Natural Science Foundation of Chongqing (Grant No. CSTB2024NSCQ-MSX0412), and the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (Grant No. ammt2021A-4).
Corresponding Authors:  Qinghong Liao     E-mail:  nculqh@163.com

Cite this article: 

Qinghong Liao(廖庆洪), Songyun Ouyang(欧阳嵩沄), Shaoping Cheng(程绍平), and Yiping Cheng(程依萍) Coherent feedback ground-state cooling of mechanical resonators assisted by a quantum well 2025 Chin. Phys. B 34 044202

[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[2] Kippenberg T J and Vahala K J 2017 Opt. Express 15 17172
[3] Meystre P 2013 Ann. Phys. 525 215
[4] Arcizet O, Cohadon P F, Briant T, et al. 2006 Phys. Rev. Lett. 97 133601
[5] Gu W J and Li G X 2013 Phys. Rev. A 87 025804
[6] Lemonde M A, Didier N and Clerk A A 2013 Phys. Rev. Lett. 111 053602
[7] Jing H, Chen J L and Ge M L 2000 Phys. Rev. A 63 015601
[8] Jing H, Özdemir Ş K, Geng Z, et al. 2015 Sci. Rep. 5 9663
[9] Huang S and Agarwal G S 2009 Phys. Rev. A 79 013821
[10] Rips S and Hartmann M J 2013 Phys. Rev. Lett. 110 120503
[11] Saglamyurek E, Jeongwan J, Verma V B, et al. 2015 Nat. Photonics 9 83
[12] Xuereb A, Freegarde T, Horak P, et al. 2010 Phys. Rev. Lett. 105 013602
[13] LaHaye M D, Buu O, Camarota B, et al. 2004 Science 304 74
[14] Wilson Rae I, Nooshi N, Dobrindt J, et al. 2008 New. J. Phys. 10 095007
[15] Elste F, Girvin S M and Clerk A A 2009 Phys. Rev. Lett. 102 207209
[16] Mancini S, Vitali D and Tombesi P 2003 Phys. Rev. Lett. 90 137901
[17] Vitali D, Gigan S, Ferreira A, et al. 2007 Rev. Lett. 98 030405
[18] Liu Y C, Xiao Y F, Luan X, et al. 2013 Phys. Rev. Lett. 110 153606
[19] Montenegro V, Coto R, Eremeev V, et al. 2018 Phys. Rev. A 98 053837
[20] Stadler P, Belzig W and Rastelli G 2016 Phys. Rev. Lett. 117 197202
[21] Teufel J D, Donner T, Li D, et al. 2011 Nature 475 359
[22] Massel F, Cho S U, Pirkkalainen J M, et al. 2012 Nat. Commun. 3 987
[23] Peterson R W, Purdy T P, Kampel N S, et al. 2016 Phys. Rev. Lett. 116 063601
[24] Xu X, Purdy T and Taylor J M 2017 Rev. Lett. 118 223602
[25] Elste F, Girvin S M and Clerk A A 2009 Phys. Rev. Lett. 102 207209
[26] Kleckner D and Bouwmeester D 2006 Nature 444 75
[27] Wilson D J, Sudhir V, Piro N, et al. 2015 Nature 524 325
[28] Rossi M, Mason D, Chen J, et al. 2018 Nature 563 53
[29] Sommer C and Genes C 2019 Phys. Rev. Lett. 123 203605
[30] Sommer C, Ghosh A and Genes C 2020 Phys. Rev. Res. 2 033299
[31] Zhang M, Yang L, Wu X, et al. 2023 Research 6 0206
[32] LaHaye M D, Buu O, Camarota B, et al. 2004 Science 304 74
[33] Zhang Y X, Wu S, Chen Z B, et al. 2006 Phys. Rev. A 94 023823
[34] Elste F, Girvin S M and Clerk A A 2009 Phys. Rev. Lett. 102 207209
[35] Schleier-Smith M H, Leroux I D, Zhang H, et al. 2011 Phys. Rev. Lett. 107 143005
[36] Guo Y J, Li K, Nie W J, et al. 2014 Phys. Rev. A 90 053841
[37] Yang J Y, Wang D Y, Bai C H, et al. 2019 Opt. Express. 27 22855
[38] Genes C, Ritsch H and Vitali D 2009 Phys. Rev. A 80 061803
[39] Ojanen T and Børkje K 2014 Phys. Rev. A 90 013824
[40] Liu N, Chang R, Zhang S, et al. 2022 Int. J. Theor. Phys. 61 120
[41] Liu Y M, Bai C H, Wang D Y, et al. 2018 Opt. Express 26 6143
[42] iao Q H, Dai Y Z, Nie W J, et al. 2020 J. Phys. B. 53 085402
[43] Vogell B, Stannigel K, Zoller P, et al. 2013 Phys. Rev. A 87 023816
[44] Sarma B and Sarma A K 2016 Phys. Rev. A 93 033845
[45] Sete E A and Eleuch H 2012 Phys. Rev. A 85 043824
[46] Sete E A, Eleuch H and Ooi C H R 2015 Phys. Rev. A 92 033843
[47] Wang L D, Yan J K, Zhu X F, et al. 2017 Physica E 89 134
[48] Metcalfe M 2014 Appl. Phys. Rev. 1 031105
[49] Ding L, Baker C, Senellart P, et al. 2010 Phys. Rev. Lett. 105 263903
[50] Ding L, Baker C, Senellart P, et al. 2011 Appl. Phys. Lett. 98 169903
[51] Usami K, Naesby A, Bagci T, et al. 2012 Nat. Phys. 8 168
[52] Anguiano S, Rozas G, Bruchhausen A E, et al. 2014 Phys. Rev. B 90 045314
[53] Ding L, Baker C, Senellart P, et al. 2011 Appl. Phys. Lett. 98 169903
[54] Nomura M, Kumagai N, Iwamoto S, et al. 2010 Nat. Phys. 6 279
[55] Hughes S and Carmichael H J 2013 New. J. Phys. 15 053039
[56] Mahajan S, Aggarwal N and Bhattacherjee A B 2013 J. Phys. B 46 085301
[57] Lai D G, Huang J, Hou B P, et al. 2021 Phys. Rev. A 103 063509
[58] Sommer C and Genes C 2019 Phys. Rev. Lett. 123 203605
[59] Habibi H, Zeuthen E, Ghanaatshoar M, et al. 2016 J. Opt. 18 084004
[60] Sommer C, Ghosh A and Genes C 2020 Phys. Rev. Res. 2 033299
[61] Rossi M, Kralj N, Zippilli S, et al. 2017 Phys. Rev. Lett. 119 123603
[62] Tebbenjohanns F, Frimmer M, Militaru A, et al. 2019 Phys. Rev. Lett. 122 223601
[63] Guo J, Norte R and Gröblacher S 2019 Phys. Rev. Lett. 123 223602
[64] Hamerly R and Mabuchi H 2012 Phys. Rev. Lett. 109 173602
[65] Hamerly R and Mabuchi H 2013 Phys. Rev. A 87 013815
[66] Harwood A, Brunelli M and Serafini A 2021 Phys. Rev. A 103 023509
[67] Frimmer M, Gieseler J, Novotny L, et al. 2016 Phys. Rev. Lett. 117 163601
[68] Daeichian A and Aghaei S 2022 J. Nonlinear. Sci. 32 14
[69] Daeichian A 2023 IEEE T. Automat. Contr. 68 6417
[70] Daeichian A and Mirzaee M 2023 Phys. Scr. 98 035014
[71] Huang S and Chen A 2019 Appl. Sci. 9 3402
[72] Mansouri D, Rezaie B, Ranjbar A, et al. 2022 J. Phys. B 55 165501
[73] Clerk A A, Devoret M H, Girvin S M, et al. 2010 Rev. Mod. Phys. 82 1155
[74] Liu Y L and Liu Y 2017 Phys. Rev. A 96 023812
[1] Enhancing entanglement and steering in a hybrid atom-optomechanical system via Duffing nonlinearity
Ling-Hui Dong(董凌晖), Xiao-Jie Wu(武晓捷), Cheng-Hua Bai(白成华), and Shao-Xiong Wu(武少雄). Chin. Phys. B, 2025, 34(2): 020304.
[2] Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering
Shan-Shan Chen(陈珊珊), Yi-Long Xie(谢亦龙), Jing-Jing Zhang(张京京), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), Huan Yang(杨桓), and Yong Ma(马勇). Chin. Phys. B, 2025, 34(1): 014201.
[3] Bose-Einstein distribution temperature features of quasiparticles around magnetopolaron in Gaussian quantum wells of alkali halogen ions
Xin Zhang(张鑫), Sarengaowa(萨仁高娃), Shuang Han(韩爽), Ran An(安然), Xin-Xue Zhang(张新雪), Xin-Ying Ji(纪新颖), Hong-Xu Jiang(江红旭), Xin-Jun Ma(马新军), Pei-Fang Li(李培芳), and Yong Sun(孙勇). Chin. Phys. B, 2024, 33(9): 097102.
[4] Quantum confinement of carriers in the type-I quantum wells structure
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(9): 097301.
[5] Nonlinearly induced entanglement in dissipatively coupled optomechanical system
Wen-Quan Yang(杨文全), Xuan Leng(冷轩), Jiong Cheng(程泂), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2024, 33(6): 060313.
[6] Reanalysis of energy band structure in the type-II quantum wells
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(6): 067302.
[7] Versatile and controlled quantum teleportation network
Yao-Yao Zhou(周瑶瑶), Peng-Xian Mei(梅鹏娴), Yan-Hong Liu(刘艳红), Liang Wu(吴量), Yan-Xiang Li(李雁翔), Zhi-Hui Yan(闫智辉), and Xiao-Jun Jia(贾晓军). Chin. Phys. B, 2024, 33(3): 034209.
[8] Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope
Zhetong Liu(刘哲彤), Bingyao Liu(刘秉尧), Dongdong Liang(梁冬冬), Xiaomei Li(李晓梅), Xiaomin Li(李晓敏), Li Chen(陈莉), Rui Zhu(朱瑞), Jun Xu(徐军), Tongbo Wei(魏同波), Xuedong Bai(白雪冬), and Peng Gao(高鹏). Chin. Phys. B, 2024, 33(3): 038502.
[9] Effects of TMIn flow rate during quantum barrier growth on multi-quantum well material properties and device performance of GaN-based laser diodes
Zhenyu Chen(陈振宇), Degang Zhao(赵德刚), Feng Liang(梁锋), Zongshun Liu(刘宗顺), Jing Yang(杨静), and Ping Chen(陈平). Chin. Phys. B, 2024, 33(12): 128102.
[10] Nonlinear enhanced mass sensor based on optomechanical system
Xin-Xin Man(满鑫鑫), Jing Sun(孙静), Wen-Zhao Zhang(张闻钊), Lijuan Luo(罗丽娟), and Guangri Jin(金光日). Chin. Phys. B, 2024, 33(12): 120303.
[11] Nonreciprocal mechanical entanglement in a spinning optomechanical system
Shan-Shan Chen(陈珊珊), Jing-Jing Zhang(张京京), Jia-Neng Li(李嘉能), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), and Huan Yang(杨桓). Chin. Phys. B, 2024, 33(11): 110305.
[12] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[13] Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force
Jimmi Hervé Talla Mbé, Ulrich Chancelin Tiofack Demanou, Christian Kenfack-Sadem, and Martin Tchoffo. Chin. Phys. B, 2023, 32(12): 124202.
[14] Quantum estimation of rotational speed in optomechanics
Hao Li(李浩) and Jiong Cheng(程泂). Chin. Phys. B, 2023, 32(10): 100602.
[15] Lower bound on the spread of valley splitting in Si/SiGe quantum wells induced by atomic rearrangement at the interface
Gang Wang(王刚), Shan Guan(管闪), Zhi-Gang Song(宋志刚), and Jun-Wei Luo(骆军委). Chin. Phys. B, 2023, 32(10): 107309.
No Suggested Reading articles found!