Coherent feedback ground-state cooling of mechanical resonators assisted by a quantum well
Qinghong Liao(廖庆洪)1,2,†, Songyun Ouyang(欧阳嵩沄)1, Shaoping Cheng(程绍平)1, and Yiping Cheng(程依萍)1
1 Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China; 2 Chongqing Research Institute of NCU, Nanchang University, Chongqing 402660, China
Abstract We theoretically investigate a cooling scheme assisted by a quantum well (QW) and coherent feedback within a hybrid optomechanical system. Although the exciton mode in the QW and the mechanical resonator (MR) are initially uncoupled, their interaction via the microcavity field leads to an indirect exciton-mode-mechanical-mode coupling. The coherent feedback loop is applied by feeding back a fraction of the output field of the cavity through a controllable beam splitter to the cavity's input mirror. It is shown that the cooling capability is enhanced by effectively suppressing the Stokes process through coupling with the QW. Furthermore, the effect of the anti-Stokes process is enhanced through the application of the coherent feedback loop. This particular system configuration enables cooling of the mechanical resonator even in the unresolved sideband regime (USR). This study has some important guiding significance in the field of quantum information processing.
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 62061028 and 62461035), the Key Project of Natural Science Foundation of Jiangxi Province (Grant No. 20232ACB202003), the Finance Science and Technology Special “contract system” Project of Nanchang University Jiangxi Province (Grant No. ZBG20230418015), the Natural Science Foundation of Chongqing (Grant No. CSTB2024NSCQ-MSX0412), and the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (Grant No. ammt2021A-4).
Qinghong Liao(廖庆洪), Songyun Ouyang(欧阳嵩沄), Shaoping Cheng(程绍平), and Yiping Cheng(程依萍) Coherent feedback ground-state cooling of mechanical resonators assisted by a quantum well 2025 Chin. Phys. B 34 044202
[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [2] Kippenberg T J and Vahala K J 2017 Opt. Express 15 17172 [3] Meystre P 2013 Ann. Phys. 525 215 [4] Arcizet O, Cohadon P F, Briant T, et al. 2006 Phys. Rev. Lett. 97 133601 [5] Gu W J and Li G X 2013 Phys. Rev. A 87 025804 [6] Lemonde M A, Didier N and Clerk A A 2013 Phys. Rev. Lett. 111 053602 [7] Jing H, Chen J L and Ge M L 2000 Phys. Rev. A 63 015601 [8] Jing H, Özdemir Ş K, Geng Z, et al. 2015 Sci. Rep. 5 9663 [9] Huang S and Agarwal G S 2009 Phys. Rev. A 79 013821 [10] Rips S and Hartmann M J 2013 Phys. Rev. Lett. 110 120503 [11] Saglamyurek E, Jeongwan J, Verma V B, et al. 2015 Nat. Photonics 9 83 [12] Xuereb A, Freegarde T, Horak P, et al. 2010 Phys. Rev. Lett. 105 013602 [13] LaHaye M D, Buu O, Camarota B, et al. 2004 Science 304 74 [14] Wilson Rae I, Nooshi N, Dobrindt J, et al. 2008 New. J. Phys. 10 095007 [15] Elste F, Girvin S M and Clerk A A 2009 Phys. Rev. Lett. 102 207209 [16] Mancini S, Vitali D and Tombesi P 2003 Phys. Rev. Lett. 90 137901 [17] Vitali D, Gigan S, Ferreira A, et al. 2007 Rev. Lett. 98 030405 [18] Liu Y C, Xiao Y F, Luan X, et al. 2013 Phys. Rev. Lett. 110 153606 [19] Montenegro V, Coto R, Eremeev V, et al. 2018 Phys. Rev. A 98 053837 [20] Stadler P, Belzig W and Rastelli G 2016 Phys. Rev. Lett. 117 197202 [21] Teufel J D, Donner T, Li D, et al. 2011 Nature 475 359 [22] Massel F, Cho S U, Pirkkalainen J M, et al. 2012 Nat. Commun. 3 987 [23] Peterson R W, Purdy T P, Kampel N S, et al. 2016 Phys. Rev. Lett. 116 063601 [24] Xu X, Purdy T and Taylor J M 2017 Rev. Lett. 118 223602 [25] Elste F, Girvin S M and Clerk A A 2009 Phys. Rev. Lett. 102 207209 [26] Kleckner D and Bouwmeester D 2006 Nature 444 75 [27] Wilson D J, Sudhir V, Piro N, et al. 2015 Nature 524 325 [28] Rossi M, Mason D, Chen J, et al. 2018 Nature 563 53 [29] Sommer C and Genes C 2019 Phys. Rev. Lett. 123 203605 [30] Sommer C, Ghosh A and Genes C 2020 Phys. Rev. Res. 2 033299 [31] Zhang M, Yang L, Wu X, et al. 2023 Research 6 0206 [32] LaHaye M D, Buu O, Camarota B, et al. 2004 Science 304 74 [33] Zhang Y X, Wu S, Chen Z B, et al. 2006 Phys. Rev. A 94 023823 [34] Elste F, Girvin S M and Clerk A A 2009 Phys. Rev. Lett. 102 207209 [35] Schleier-Smith M H, Leroux I D, Zhang H, et al. 2011 Phys. Rev. Lett. 107 143005 [36] Guo Y J, Li K, Nie W J, et al. 2014 Phys. Rev. A 90 053841 [37] Yang J Y, Wang D Y, Bai C H, et al. 2019 Opt. Express. 27 22855 [38] Genes C, Ritsch H and Vitali D 2009 Phys. Rev. A 80 061803 [39] Ojanen T and Børkje K 2014 Phys. Rev. A 90 013824 [40] Liu N, Chang R, Zhang S, et al. 2022 Int. J. Theor. Phys. 61 120 [41] Liu Y M, Bai C H, Wang D Y, et al. 2018 Opt. Express 26 6143 [42] iao Q H, Dai Y Z, Nie W J, et al. 2020 J. Phys. B. 53 085402 [43] Vogell B, Stannigel K, Zoller P, et al. 2013 Phys. Rev. A 87 023816 [44] Sarma B and Sarma A K 2016 Phys. Rev. A 93 033845 [45] Sete E A and Eleuch H 2012 Phys. Rev. A 85 043824 [46] Sete E A, Eleuch H and Ooi C H R 2015 Phys. Rev. A 92 033843 [47] Wang L D, Yan J K, Zhu X F, et al. 2017 Physica E 89 134 [48] Metcalfe M 2014 Appl. Phys. Rev. 1 031105 [49] Ding L, Baker C, Senellart P, et al. 2010 Phys. Rev. Lett. 105 263903 [50] Ding L, Baker C, Senellart P, et al. 2011 Appl. Phys. Lett. 98 169903 [51] Usami K, Naesby A, Bagci T, et al. 2012 Nat. Phys. 8 168 [52] Anguiano S, Rozas G, Bruchhausen A E, et al. 2014 Phys. Rev. B 90 045314 [53] Ding L, Baker C, Senellart P, et al. 2011 Appl. Phys. Lett. 98 169903 [54] Nomura M, Kumagai N, Iwamoto S, et al. 2010 Nat. Phys. 6 279 [55] Hughes S and Carmichael H J 2013 New. J. Phys. 15 053039 [56] Mahajan S, Aggarwal N and Bhattacherjee A B 2013 J. Phys. B 46 085301 [57] Lai D G, Huang J, Hou B P, et al. 2021 Phys. Rev. A 103 063509 [58] Sommer C and Genes C 2019 Phys. Rev. Lett. 123 203605 [59] Habibi H, Zeuthen E, Ghanaatshoar M, et al. 2016 J. Opt. 18 084004 [60] Sommer C, Ghosh A and Genes C 2020 Phys. Rev. Res. 2 033299 [61] Rossi M, Kralj N, Zippilli S, et al. 2017 Phys. Rev. Lett. 119 123603 [62] Tebbenjohanns F, Frimmer M, Militaru A, et al. 2019 Phys. Rev. Lett. 122 223601 [63] Guo J, Norte R and Gröblacher S 2019 Phys. Rev. Lett. 123 223602 [64] Hamerly R and Mabuchi H 2012 Phys. Rev. Lett. 109 173602 [65] Hamerly R and Mabuchi H 2013 Phys. Rev. A 87 013815 [66] Harwood A, Brunelli M and Serafini A 2021 Phys. Rev. A 103 023509 [67] Frimmer M, Gieseler J, Novotny L, et al. 2016 Phys. Rev. Lett. 117 163601 [68] Daeichian A and Aghaei S 2022 J. Nonlinear. Sci. 32 14 [69] Daeichian A 2023 IEEE T. Automat. Contr. 68 6417 [70] Daeichian A and Mirzaee M 2023 Phys. Scr. 98 035014 [71] Huang S and Chen A 2019 Appl. Sci. 9 3402 [72] Mansouri D, Rezaie B, Ranjbar A, et al. 2022 J. Phys. B 55 165501 [73] Clerk A A, Devoret M H, Girvin S M, et al. 2010 Rev. Mod. Phys. 82 1155 [74] Liu Y L and Liu Y 2017 Phys. Rev. A 96 023812
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.