CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Bose-Einstein distribution temperature features of quasiparticles around magnetopolaron in Gaussian quantum wells of alkali halogen ions |
Xin Zhang(张鑫)1,2, Sarengaowa(萨仁高娃)1,2, Shuang Han(韩爽)1,2, Ran An(安然)1,2, Xin-Xue Zhang(张新雪)1,2, Xin-Ying Ji(纪新颖)1,2, Hong-Xu Jiang(江红旭)1,2, Xin-Jun Ma(马新军)1,2, Pei-Fang Li(李培芳)1,2, and Yong Sun(孙勇)1,2,† |
1 College of Physics and Electronic Information, Inner Mongolia Minzu University, Tongliao 028000, China; 2 Institute of Condensed Matter Physics, Inner Mongolia Minzu University, Tongliao 028000, China |
|
|
Abstract We have applied strong coupling unitary transformation method combined with Bose-Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells. The obtained results showed that under magnetic field effect, magnetopolaron quasiparticle was formed through the interaction of electrons and surrounding phonons. At the same time, magnetopolaron was influenced by phonon temperature statistical law and important energy level shifts down and binding energy increases. This revealed that lattice temperature and magnetic field could easily affect magnetopolaron and the above results could play key roles in exploring thermoelectric conversion and conductivity of crystal materials.
|
Received: 11 March 2024
Revised: 10 May 2024
Accepted manuscript online: 27 June 2024
|
PACS:
|
71.38.-k
|
(Polarons and electron-phonon interactions)
|
|
73.21.Fg
|
(Quantum wells)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12164032, 11964026, and 12364010), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2019MS01010, 2022MS01014, and 2020BS01009), the Doctor Research Start-up Fund of Inner Mongolia Minzu University (Grant Nos. BS625 and BS439), and the Basic Research Funds for Universities Directly under the Inner Mongolia Autonomous Region, China (Grant No. GXKY23Z029). |
Corresponding Authors:
Yong Sun
E-mail: sy19851009@126.com,sunyong@imun.edu.cn
|
Cite this article:
Xin Zhang(张鑫), Sarengaowa(萨仁高娃), Shuang Han(韩爽), Ran An(安然), Xin-Xue Zhang(张新雪), Xin-Ying Ji(纪新颖), Hong-Xu Jiang(江红旭), Xin-Jun Ma(马新军), Pei-Fang Li(李培芳), and Yong Sun(孙勇) Bose-Einstein distribution temperature features of quasiparticles around magnetopolaron in Gaussian quantum wells of alkali halogen ions 2024 Chin. Phys. B 33 097102
|
[1] Alexandrov A S and Devreese J T 2010 Advances in polaron physics (Heidelberg: Springer Berlin) pp. 10-12 [2] Emin D 2013 Polarons (England: Cambridge University Press) pp. 7-9 [3] Zheng F and Wang L 2019 Energ. Environ. Sci. 12 1219 [4] De Raedt H and Lagendijk A 1983 Phys. Rev. B 27 6097 [5] Alexandrov A S and Kornilovitch P E 1999 Phys. Rev. Lett. 82 807 [6] Bruderer M, Klein A, Clark S R, et al. 2007 Phys. Rev. A 76 011605 [7] Landau L D and Pekar S I 1948 Zh. Eksp. Teor. Fiz. 18 419 [8] Rath S P and Schmidt R 2013 Phys. Rev. A 88 053632 [9] Stafström S, Bredas J L, Epstein A J, et al. 1987 Phys. Rev. Lett. 59 1464 [10] Ōsaka Y 1959 Prog. Theor. Phys. 22 437 [11] Mauger A 1983 Phys. Rev. B 27 2308 [12] Devreese J T and Alexandrov A S 2009 Rep. Prog. Phys. 72 066501 [13] Trallero-Giner C, Santiago-Pérez D G and Fomin V M 2023 Sci. Rep. 13 292 [14] Kenfack-Sadem C, Ekengoue C M, Danga J E, et al. 2020 Phys. Lett. A 384 126662 [15] Watanabe S, Ando K, Kang K, et al. 2014 Nat. Phys. 10 308 [16] Seyid-Rzayeva S M 2012 Fizika (Baku) 18 8 [17] Chen S H 2011 Physica E 43 1007 [18] Khordad R and Sedehi H R R 2017 Indian J. Phys. 91 825 [19] Jasmine P C L and Peter A J 2015 J. Semicond. 36 032001 [20] Barat E, Shakarbekovna X D and Abbasovich A S 2019 Eur. Sci. Rev. 5-6 108 [21] Popov V G, Krishtop V G, Henini M, et al. 2022 Physica E 136 115019 [22] Fotue A J, Kenfack S C, Tiotsop M, et al. 2015 Mod. Phys. Lett. B 29 1550241 [23] Khordad R, Rastegar Sedehi H R 2020 Opt. Quantum Electron. 52 1 [24] Wysmołek A, Stȩpniewski R, Potemski M, et al. 2006 Phys. Rev. B 74 195205 [25] Klimin S N, Fomin V M and Devreese J T 2008 Phys. Rev. B 77 205311 [26] Fobasso M F C, Fotue A J, Kenfack S C, et al. 2020 Physica E 118 113941 [27] Donfack B, Fotio F, Fotue A J, et al. 2020 Chin. J. Phys. 66 573 [28] Yang H T and Ji W H 2015 J. Low Temp. Phys. 179 291 [29] Wang W, Van Duppen B, Van der Donck M, et al. 2018 Phys. Rev. B 97 064108 [30] Tiotsop M, Fotue A J, Fotsin H B, et al. 2018 Chin. J. Phys. 56 315 [31] Gong X L, Cao S, Fang Y, et al. 2022 Chin. Phys. B 31 050402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|