Synergistic SERS effects in organic/MoS2 heterojunctions with cavity structure enabling nanoplastics screening and antibiotic adsorption behavior detection
Liqi Ma(马立琪), Abdur Rahim(阿卜杜勒-拉希姆), Baiju Lü(吕白菊), Muhammad Saleem(穆罕默德-萨利姆), Xiaoyu Zhang(张晓雨), Mingyue Li(李明月), Muhammad Zahid(穆罕默德-扎希德), and Mei Liu(刘玫)†
School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract The detection of nanoplastics (NPs) and their interactions with antibiotics is critical due to their potential environmental and health risks. Traditional detection methods are challenged by the small size and chemical similarity of NPs to microplastics. Current surface-enhanced Raman scattering (SERS) substrates for NP detection are limited by high cost, reliance on single enhancement modes, and insufficient sensitivity and selectivity, especially for NP-antibiotic complexes. In this study, the F/M-AAO substrate, which integrates 2,3,5,6-tetrafluoro-tetracyanoquinodimethane (FTCNQ) and molybdenum disulfide (MoS) with anodic aluminum oxide (AAO) templates, is used to enhance the detection of NPs and NP-antibiotic complexes. The conical cavity structure of the substrate facilitates the enrichment and direct detection of NPs with diameters smaller than 450 nm. The three-dimensional (3D) F/M-AAO substrate achieved a limit of detection (LOD) of 1.73 ng/L for 100-nm NPs and a minimum detection concentration of 10 M for ciprofloxacin adsorbed on NPs (NPs-CIP). It demonstrated remarkable sensitivity and selectivity in the detection of both individual NPs and NP-antibiotic complexes. This work highlights the innovative application of the F/M-AAO substrate in the SERS detection of NPs and NP-antibiotic complexes, providing a low-cost and effective platform for monitoring emerging environmental contaminants.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074229).
Corresponding Authors:
Mei Liu
E-mail: liumei@sdnu.edu.cn
Cite this article:
Liqi Ma(马立琪), Abdur Rahim(阿卜杜勒-拉希姆), Baiju Lü(吕白菊), Muhammad Saleem(穆罕默德-萨利姆), Xiaoyu Zhang(张晓雨), Mingyue Li(李明月), Muhammad Zahid(穆罕默德-扎希德), and Mei Liu(刘玫) Synergistic SERS effects in organic/MoS2 heterojunctions with cavity structure enabling nanoplastics screening and antibiotic adsorption behavior detection 2025 Chin. Phys. B 34 047402
[1] Katare Y, Singh P, Sankhla M S, Singhal M, Jadhav E B, Parihar K, Nikalje B T, Trpathi A and Bhardwaj L 2022 Biointerface Res. Appl. Chem. 12 3407 [2] Möller J N, Löder M G J and Laforsch C 2020 Environ. Sci. Technol. 54 2078 [3] Luo H W, Liu C Y, He D Q, Xu J, Sun J Q, Li J and Pan X L 2022 J. Hazard. Mater. 423 126915 [4] You X Q, Cao X Q, Zhang X, Guo J H and SunWL 2021 Environ. Int. 157 106842 [5] Carbery M, O’Connor W and Palanisami T 2018 Environ. Int. 115 400 [6] Pirsaheb M, Hossini H and Makhdoumi P 2020 Process Saf. Environ. Prot. 142 1 [7] Fang C, Sobhani Z, Zhang X, Gibson C T, Tang Y H and Naidu R 2020 Water Res. 183 116046 [8] Caldwell J, Taladriz-Blanco P, Rothen-Rutishauser B and Petri-Fink A 2021 Nanomaterials 11 1149 [9] Xie L F, Gong K D, Liu Y Y and Zhang L W 2023 Environ. Sci. Technol. 57 25 [10] Yang T, Luo J L and Nowack B 2021 Environ. Sci. Technol. 55 15873 [11] Jiang L, Hassan M M, Ali S, Li H H, Sheng R and Chen Q S 2021 Trends Food Sci. Technol. 112 225 [12] Jiang S, Chang L, Luo J, Zhang J F, Liu X H, Lee C Y and Zhang W 2021 Analyst 146 6170 [13] Liu J, Xu G J, Ruan X J, Li K J and Zhang L W 2022 Front. Environ. Sci. Eng. 16 143 [14] Xu G J, Cheng H Y, Jones R B, Feng Y Q, Gong K D, Li K J, Fang X Z, Tahir M A, Valev V K and Zhang L W 2020 Environ. Sci. Technol. 54 15594 [15] Chang L, Jiang S, Luo J, Zhang J F, Liu X H, Lee C Y and Zhang W 2022 Environ. Sci.-Nano 9 542 [16] Zhang J J, Peng M, Lian E K, Xia L, Asimakopoulos A G, Luo S H and Wang L 2023 Environ. Sci. Technol. 57 8365 [17] Le Q T, Ly N H, Kim M K, Lim S H, Son S J, Zoh K D and Joo S W 2021 J. Hazard. Mater. 402 123499 [18] Li J, Liu H, Chen S Y, Liang X, Gao Y M, Zhao X F, Li Z, Zhang C, Lei F C and Yu J 2022 J. Phys. Chem. Lett. 13 5815 [19] Silva A B, Bastos A S, Justino C I L, da Costa J A P, Duarte A C and Rocha-Santos T A P 2018 Anal. Chim. Acta 1017 1 [20] Rahim A, Ma L Q, SaleemM, Lyu B, Shafi M, You Y X, LiMY, Zhang X Y and Liu M 2024 Adv. Sci. 11 2409838 [21] Wang G T, Wei H N, Tian Y, Wu M M, Sun Q Q, Peng Z S, Sun L F and Liu M 2020 Opt. Express 28 18843 [22] Liu M, Hu X, Zhang C, Shafi M, Ma L, Lv B, Rahim A, Saleem M and Zhao L 2024 Sens. Actuator B 398 134688 [23] Plechinger G, Heydrich S, Eroms J, Weiss D, Schüller C and Korn T 2012 Appl. Phys. Lett. 101 101906 [24] Meilakhs A P and Koniakhin S V 2017 Superlattices Microstruct. 110 319 [25] Xiao K, Rondinone A J, Puretzky A A, Ivanov I N, Retterer S T and Geohegan D B 2009 Chem. Mater. 21 4275 [26] Zhang X, Suo H, Guo Y, Chen J K, Wang Y, Wei X H, Zheng W L, Li S H and Wang F 2024 Nat. Commun. 15 6797 [27] Guan Y S, Qiao J, Liang Y Y, Bisoyi H K, Wang C, Xu W, Zhu D B and Li Q 2022 Light-Sci. Appl. 11 236 [28] Lee C H and Fang J K H 2022 J. Environ. Sci. 121 58 [29] Lv L L, He L, Jiang S Q, Chen J J, Zhou C X, Qu J H, Lu Y Q, Hong P Z, Sun S L and Li C Y 2020 Sci. Total Environ. 728 138449 [30] Liu M, Zhang C, Ou C J, Hu X X, Saleem M, Rahim A, Ma L Q, Lv B J, Liu X H and Zhang W 2024 Sens. Actuator B 401 135007 [31] Jiao A X, Cui Q Q, Li S, Li H S, Xu L L, Tian Y, Ma H, Zhang M Y, Liu X D and Chen M 2022 Sens. Actuator B 350 130848
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.