Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 047402    DOI: 10.1088/1674-1056/ada888
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Synergistic SERS effects in organic/MoS2 heterojunctions with cavity structure enabling nanoplastics screening and antibiotic adsorption behavior detection

Liqi Ma(马立琪), Abdur Rahim(阿卜杜勒-拉希姆), Baiju Lü(吕白菊), Muhammad Saleem(穆罕默德-萨利姆), Xiaoyu Zhang(张晓雨), Mingyue Li(李明月), Muhammad Zahid(穆罕默德-扎希德), and Mei Liu(刘玫)†
School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  The detection of nanoplastics (NPs) and their interactions with antibiotics is critical due to their potential environmental and health risks. Traditional detection methods are challenged by the small size and chemical similarity of NPs to microplastics. Current surface-enhanced Raman scattering (SERS) substrates for NP detection are limited by high cost, reliance on single enhancement modes, and insufficient sensitivity and selectivity, especially for NP-antibiotic complexes. In this study, the F/M-AAO substrate, which integrates 2,3,5,6-tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and molybdenum disulfide (MoS2) with anodic aluminum oxide (AAO) templates, is used to enhance the detection of NPs and NP-antibiotic complexes. The conical cavity structure of the substrate facilitates the enrichment and direct detection of NPs with diameters smaller than 450 nm. The three-dimensional (3D) F/M-AAO substrate achieved a limit of detection (LOD) of 1.73×106 ng/L for 100-nm NPs and a minimum detection concentration of 1010 M for ciprofloxacin adsorbed on NPs (NPs-CIP). It demonstrated remarkable sensitivity and selectivity in the detection of both individual NPs and NP-antibiotic complexes. This work highlights the innovative application of the F/M-AAO substrate in the SERS detection of NPs and NP-antibiotic complexes, providing a low-cost and effective platform for monitoring emerging environmental contaminants.
Keywords:  synergistic SERS enhancement      organic/MoS2 composite      nanoplastics  
Received:  08 January 2025      Revised:  08 January 2025      Accepted manuscript online:  10 January 2025
PACS:  74.25.nd (Raman and optical spectroscopy)  
  72.80.Tm (Composite materials)  
  88.20.rb (Plastics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074229).
Corresponding Authors:  Mei Liu     E-mail:  liumei@sdnu.edu.cn

Cite this article: 

Liqi Ma(马立琪), Abdur Rahim(阿卜杜勒-拉希姆), Baiju Lü(吕白菊), Muhammad Saleem(穆罕默德-萨利姆), Xiaoyu Zhang(张晓雨), Mingyue Li(李明月), Muhammad Zahid(穆罕默德-扎希德), and Mei Liu(刘玫) Synergistic SERS effects in organic/MoS2 heterojunctions with cavity structure enabling nanoplastics screening and antibiotic adsorption behavior detection 2025 Chin. Phys. B 34 047402

[1] Katare Y, Singh P, Sankhla M S, Singhal M, Jadhav E B, Parihar K, Nikalje B T, Trpathi A and Bhardwaj L 2022 Biointerface Res. Appl. Chem. 12 3407
[2] Möller J N, Löder M G J and Laforsch C 2020 Environ. Sci. Technol. 54 2078
[3] Luo H W, Liu C Y, He D Q, Xu J, Sun J Q, Li J and Pan X L 2022 J. Hazard. Mater. 423 126915
[4] You X Q, Cao X Q, Zhang X, Guo J H and SunWL 2021 Environ. Int. 157 106842
[5] Carbery M, O’Connor W and Palanisami T 2018 Environ. Int. 115 400
[6] Pirsaheb M, Hossini H and Makhdoumi P 2020 Process Saf. Environ. Prot. 142 1
[7] Fang C, Sobhani Z, Zhang X, Gibson C T, Tang Y H and Naidu R 2020 Water Res. 183 116046
[8] Caldwell J, Taladriz-Blanco P, Rothen-Rutishauser B and Petri-Fink A 2021 Nanomaterials 11 1149
[9] Xie L F, Gong K D, Liu Y Y and Zhang L W 2023 Environ. Sci. Technol. 57 25
[10] Yang T, Luo J L and Nowack B 2021 Environ. Sci. Technol. 55 15873
[11] Jiang L, Hassan M M, Ali S, Li H H, Sheng R and Chen Q S 2021 Trends Food Sci. Technol. 112 225
[12] Jiang S, Chang L, Luo J, Zhang J F, Liu X H, Lee C Y and Zhang W 2021 Analyst 146 6170
[13] Liu J, Xu G J, Ruan X J, Li K J and Zhang L W 2022 Front. Environ. Sci. Eng. 16 143
[14] Xu G J, Cheng H Y, Jones R B, Feng Y Q, Gong K D, Li K J, Fang X Z, Tahir M A, Valev V K and Zhang L W 2020 Environ. Sci. Technol. 54 15594
[15] Chang L, Jiang S, Luo J, Zhang J F, Liu X H, Lee C Y and Zhang W 2022 Environ. Sci.-Nano 9 542
[16] Zhang J J, Peng M, Lian E K, Xia L, Asimakopoulos A G, Luo S H and Wang L 2023 Environ. Sci. Technol. 57 8365
[17] Le Q T, Ly N H, Kim M K, Lim S H, Son S J, Zoh K D and Joo S W 2021 J. Hazard. Mater. 402 123499
[18] Li J, Liu H, Chen S Y, Liang X, Gao Y M, Zhao X F, Li Z, Zhang C, Lei F C and Yu J 2022 J. Phys. Chem. Lett. 13 5815
[19] Silva A B, Bastos A S, Justino C I L, da Costa J A P, Duarte A C and Rocha-Santos T A P 2018 Anal. Chim. Acta 1017 1
[20] Rahim A, Ma L Q, SaleemM, Lyu B, Shafi M, You Y X, LiMY, Zhang X Y and Liu M 2024 Adv. Sci. 11 2409838
[21] Wang G T, Wei H N, Tian Y, Wu M M, Sun Q Q, Peng Z S, Sun L F and Liu M 2020 Opt. Express 28 18843
[22] Liu M, Hu X, Zhang C, Shafi M, Ma L, Lv B, Rahim A, Saleem M and Zhao L 2024 Sens. Actuator B 398 134688
[23] Plechinger G, Heydrich S, Eroms J, Weiss D, Schüller C and Korn T 2012 Appl. Phys. Lett. 101 101906
[24] Meilakhs A P and Koniakhin S V 2017 Superlattices Microstruct. 110 319
[25] Xiao K, Rondinone A J, Puretzky A A, Ivanov I N, Retterer S T and Geohegan D B 2009 Chem. Mater. 21 4275
[26] Zhang X, Suo H, Guo Y, Chen J K, Wang Y, Wei X H, Zheng W L, Li S H and Wang F 2024 Nat. Commun. 15 6797
[27] Guan Y S, Qiao J, Liang Y Y, Bisoyi H K, Wang C, Xu W, Zhu D B and Li Q 2022 Light-Sci. Appl. 11 236
[28] Lee C H and Fang J K H 2022 J. Environ. Sci. 121 58
[29] Lv L L, He L, Jiang S Q, Chen J J, Zhou C X, Qu J H, Lu Y Q, Hong P Z, Sun S L and Li C Y 2020 Sci. Total Environ. 728 138449
[30] Liu M, Zhang C, Ou C J, Hu X X, Saleem M, Rahim A, Ma L Q, Lv B J, Liu X H and Zhang W 2024 Sens. Actuator B 401 135007
[31] Jiao A X, Cui Q Q, Li S, Li H S, Xu L L, Tian Y, Ma H, Zhang M Y, Liu X D and Chen M 2022 Sens. Actuator B 350 130848
[1] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[2] Identifying the effect of photo-generated carriers on the phonons in rutile TiO2 through Raman spectroscopy
Zheng Wang(王征), Min Liao(廖敏), Guihua Wang(王桂花), and Meng Zhang(张梦). Chin. Phys. B, 2024, 33(11): 117802.
[3] Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films
Kai Chen(陈凯), Jianguo Zhao(赵见国), Yu Ding(丁宇), Wenxiao Hu(胡文晓), Bin Liu(刘斌), Tao Tao(陶涛), Zhe Zhuang(庄喆), Yu Yan(严羽), Zili Xie(谢自力), Jianhua Chang(常建华), Rong Zhang(张荣), and Youliao Zheng(郑有炓). Chin. Phys. B, 2024, 33(1): 016801.
[4] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[7] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
[8] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[9] Thickness-dependent excitonic properties of atomically thin 2H-MoTe2
Jin-Huan Li(李金焕), Dan Bing(邴单), Zhang-Ting Wu(吴章婷), Guo-Qing Wu(吴国庆), Jing Bai(白静), Ru-Xia Du(杜如霞), Zheng-Qing Qi(祁正青). Chin. Phys. B, 2020, 29(1): 017802.
[10] Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2019, 28(2): 027401.
[11] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[12] Highly sensitive and stable SERS probes of alternately deposited Ag and Au layers on 3D SiO2 nanogrids for detection of trace mercury ions
Yi Tian(田毅), Han-Fu Wang(王汉夫), Lan-Qin Yan(闫兰琴), Xian-Feng Zhang(张先锋), Attia Falak, Pei-Pei Chen(陈佩佩), Feng-Liang Dong(董凤良), Lian-Feng Sun(孙连峰), Wei-Guo Chu(禇卫国). Chin. Phys. B, 2018, 27(7): 077406.
[13] Pressure-induced enhancement of optoelectronic properties in PtS2
Yi-Fang Yuan(袁亦方), Zhi-Tao Zhang(张志涛), Wei-Ke Wang(王伟科), Yong-Hui Zhou(周永惠), Xu-Liang Chen(陈绪亮), Chao An(安超), Ran-Ran Zhang(张冉冉), Ying Zhou(周颖), Chuan-Chuan Gu(顾川川), Liang Li(李亮), Xin-Jian Li(李新建), Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2018, 27(6): 066201.
[14] The structure and elasticity of phase B silicates under high pressure by first principles simulation
Lei Liu(刘雷), Li Yi(易丽), Hong Liu(刘红), Ying Li(李营), Chun-Qiang Zhuang(庄春强), Long-Xing Yang(杨龙星), Gui-Ping Liu(刘桂平). Chin. Phys. B, 2018, 27(4): 047402.
[15] Electro-statically controllable graphene local heater
Hui-Shan Wang(王慧山), Lian-Wen Deng(邓联文), Lei Li(李蕾), Qiu-Juan Sun(孙秋娟), Hong Xie(谢红), Hao-Min Wang(王浩敏). Chin. Phys. B, 2018, 27(3): 037203.
No Suggested Reading articles found!