Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 044205    DOI: 10.1088/1674-1056/adad55
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband polarization-independent terahertz multifunctional liquid crystal coding metasurface based on topological optimization

Yu Chen(陈羽)1, Wu-Hao Cao(曹吴昊)1, Jia-Qi Li(李嘉琦)1, Ming-Zhe Zhang(张明哲)1, Xin-Yi Du(杜欣怡)1, Ding-Shan Gao(郜定山)2, and Pei-Li Li(李培丽)1,†
1 Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal (LC) is proposed. The metasurface can achieve reconfigurability for beam steering and vortex beam generation within a frequency range of 0.68 THz-0.72 THz. Firstly, the metasurface unit is topologically optimized using the non-dominant sequencing genetic algorithms (NSGA-II) multi-objective optimization algorithm. By applying the LC's electrically tunable refractive index properties, the metasurface unit enables polarization-independent 2-bit coding within a frequency range of 0.68 THz-0.72 THz. Then, based on the designed metasurface unit, the array arrangement of the metasurface is reverse-designed to achieve beam steering and vortex beam generation. The results show that, for beam steering, not only can polarization-independent steering of both single- and multi-beam be achieved within the 35 elevation angle range, but also independent control of the target angle of each beam in the multi-beam steering. For vortex beam generation, the metasurfaces can achieve the generation of single- and multi-vortex beams with topological charges l=±1, ±2 within the 35 elevation angle range, and the generation angles of each vortex beam in the multi-vortex beam can be independently controlled. This provides flexibility and diversity in the generation of vortex beams. Therefore, the proposed terahertz LC metasurface can realize flexible control of reconfigurable functions and has certain application prospects in terahertz communication, phased array radar, and vortex radar.
Keywords:  coding metasurfaces      polarization-independent      terahertz      topology optimization  
Received:  19 December 2024      Revised:  13 January 2025      Accepted manuscript online:  23 January 2025
PACS:  02.40.Pc (General topology)  
  42.70.Df (Liquid crystals)  
  61.30.-v (Liquid crystals)  
  07.05.Tp (Computer modeling and simulation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the Open Fund of Wuhan National Research Center for Optoelectronics (Grant No. 2022WNLOKF012) and the National College Students Innovation and Entrepreneurship Training Program (Grant No. 2023102930147).
Corresponding Authors:  Pei-Li Li     E-mail:  lipl@njupt.edu.cn

Cite this article: 

Yu Chen(陈羽), Wu-Hao Cao(曹吴昊), Jia-Qi Li(李嘉琦), Ming-Zhe Zhang(张明哲), Xin-Yi Du(杜欣怡), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽) Broadband polarization-independent terahertz multifunctional liquid crystal coding metasurface based on topological optimization 2025 Chin. Phys. B 34 044205

[1] Cui T J, Qi M Q, Wan X, et al. 2014 Light: Science & Applications 3 218
[2] Lai P T, Li Z L, Wang W, et al. 2022 Chin. Phys. B 31 098102
[3] Yu J Y, Zheng Q R, Zhang B, et al. 2022 Chin. Phys. B 31 090704
[4] Hong J, Ni M Y, Zhang Z P, Hu Z D, Wang J C, Shen X P, Wang X, Li M M and Khakhomov Sergei 2024 Nanophotonics 14 13
[5] Zhang B L, Hu Z D, Wu J J, et al. 2023 Opt. Lett. 48 2409
[6] Bai T R, Li Q, Wang Y Q, et al. 2021 Opt. Express 29 25270
[7] Jing X F, Ke Y H, Tian Y, et al. 2020 IEEE Access 8 164795
[8] Hu X L, Yang Q L, Ba L L, et al. 2023 Opt. Lett. 48 908
[9] Ba L L, Yang Q L, Yang J C, et al. 2024 Opt. Lett. 49 5075
[10] Liu C X, Yang F, Fu X J, et al. 2021 Adv. Opt. Mater. 9 2100932
[11] Si L M, Tang P C and Lv X 2022 ZTE Technology 28 13
[12] Zhang H, Huang J, Tian M, et al. 2023 Opt. Commun. 527 128958
[13] Zhang Y J, Luan J Q, Li C L, et al. 2024 Acta Opt. Sin. 44 1124002
[14] Luan J Q, Zhang Y J, Chen Y, et al. 2024 Acta Phys. Sin. 73 144204 (in Chinese)
[15] Lv E P, Wang W G, Liu S Y, Pan T Y, Zhu C X and Wang H M 2023 Conference on Lasers and Electro-Optics (CLEO) pp. 1-2
[16] Wang W G, Lv E P, Hou Y Z, et al. 2022 Asia Communications and Photonics Conference (ACP) 50
[17] Cheng G, Si L M, Tang P C, et al. 2022 Opt. Express 30 41340
[18] Zhao S D, Zhang L N, Han P, et al. 2024 Small (Weinheim an der Bergstrasse, Germany) 20 2308349
[19] Han D, Ma Z Y, Wang J L, et al. 2022 Chin. J. Lasers 49 1714001
[20] Sui S, Ma H, Wang J F, et al. 2019 J. Phys. D: Appl. Phys. 52 035103
[21] Deng G, Hu H, Mo H, et al. 2022 Opt. Express 30 22550
[22] Gao S, Yang J, Wang P, et al. 2018 Appl. Sci. 8 2528
[23] Zhang G Z, Li K W, Xu L, et al. 2024 IEEE Antennas and Wireless Propagation Letters 23 2066
[24] Li G Q, Shi H Y, Liu K, et al. 2021 Acta Phys. Sin. 70 188701 (in Chinese)
[1] Enhanced picosecond terahertz wave generation based on cascade effects in a terahertz parametric generator
Jingxi Zhang(张敬喜), Yuye Wang(王与烨), Bingfeng Xu(徐炳烽), Kai Chen(陈锴), Zikun Liu(刘紫鲲), Hongru Ma(马鸿儒), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2024, 33(8): 084203.
[2] Terahertz high-sensitivity SIS mixer based on Nb-AlN-NbN hybrid superconducting tunnel junctions
Bo-Liang Liu(刘博梁), Dong Liu(刘冬), Ming Yao(姚明), Jun-Da Jin(金骏达), Zheng Wang(王争), Jing Li(李婧), Sheng-Cai Shi(史生才), Artem Chekushkin, Michael Fominsky, Lyudmila Filippenko, and Valery Koshelets. Chin. Phys. B, 2024, 33(5): 058501.
[3] Terahertz toroidal dipole metamaterial sensors for detection of aflatoxin B1
Jianwei Xu(徐建伟), Shoujian Ouyang(欧阳收剑), Shouxin Duan(段守鑫), Liner Zou(邹林儿), Danni Ye(叶丹妮), Sijia Yang(杨思嘉), and Xiaohua Deng(邓晓华). Chin. Phys. B, 2024, 33(3): 038701.
[4] Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization
Ya-Jie Zhang(张亚杰), Chao-Long Li(李潮龙), Jia-Qi Luan(栾迦淇), Ming Zhao(赵茗), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽). Chin. Phys. B, 2024, 33(10): 104210.
[5] Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon
Si-Yu Tu(涂思语), De-Feng Liu(刘德峰), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), and Ke-Jia Wang(王可嘉). Chin. Phys. B, 2024, 33(1): 014211.
[6] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[7] Nonlinear mixing-based terahertz emission in inclined rippled density plasmas
K Gopal, A P Singh, and S Divya. Chin. Phys. B, 2023, 32(6): 065202.
[8] Integrated system of traditional THz time-domain spectroscopy and asynchronous optical sampling
Jing Ding(丁晶), Qing-Hao Meng(孟庆昊), Yan Shen(沈妍), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), Hai-Lin Cui(崔海林), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2023, 32(4): 048702.
[9] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[10] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[11] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[12] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[13] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[14] Multi-channel terahertz focused beam generator based on shared-aperture metasurface
Jiu-Sheng Li(李九生) and Yi Chen(陈翊). Chin. Phys. B, 2023, 32(12): 124204.
[15] Terahertz shaping technology based on coherent beam combining
Xiao-Ran Zheng(郑晓冉), Dan-Ni Ma(马丹妮), Guang-Tong Jiang(蒋广通), Cun-Lin Zhang(张存林), and Liang-Liang Zhang(张亮亮). Chin. Phys. B, 2023, 32(11): 114210.
No Suggested Reading articles found!