Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 044204    DOI: 10.1088/1674-1056/adb262
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantitative determination of modal photon number density spectrum in arbitrary dielectric structures with a quantum emitter

Li-Heng Chen(陈立恒)†, Fengfeng Luo(罗凤凤), and Yonggui Gao(高勇贵)
Department of Basic Courses Teaching, Software Engineering Institute of Guangzhou, Guangzhou 510990, China
Abstract  Understanding the photon number statistics of a quantum emitter (QE) interacting with complex photonic environments is fundamental to advances in quantum optics and nanophotonics. We introduce a general theoretical framework for calculating the modal photon number density spectrum (MPNDS) in arbitrary dielectric structures with an embedded two-level QE. We validate our approach by investigating a system composed of a two-level QE and a photonic crystal (PhC) slab with an L3 cavity and a waveguide, finding that the MPNDS exhibits significant changes in both waveguide and background radiative channels as the interaction between the QE and modal field transitions from weak coupling to strong coupling. We observe that the number of photons guided along the waveguide shows a strong dependence on the QE's transition frequency and transition dipole moment, but demonstrates robustness to the transition dipole moment when the transition frequency approaches the waveguide cutoff frequency. Our work allows for the determination and tailoring of light emission characteristics across diverse radiative channels in complex photonic environments.
Keywords:  beta factor      light extraction efficiency      photoluminescence spectrum      photonic crystals      power spectrum      spontaneous emission      strong coupling interaction  
Received:  07 November 2024      Revised:  19 January 2025      Accepted manuscript online:  05 February 2025
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.70.Qs (Photonic bandgap materials)  
Fund: Project supported by the Basic and Applied Basic Research Project, Guangzhou Basic Research Plan (Grant No. 202201011444).
Corresponding Authors:  Li-Heng Chen     E-mail:  chlheng@qq.com

Cite this article: 

Li-Heng Chen(陈立恒), Fengfeng Luo(罗凤凤), and Yonggui Gao(高勇贵) Quantitative determination of modal photon number density spectrum in arbitrary dielectric structures with a quantum emitter 2025 Chin. Phys. B 34 044204

[1] Walther H, Varcoe B T H, Englert B G and Becker T 2006 Rep. Prog. Phys. 69 1325
[2] Lodahl P, Mahmoodian S and Stobbe S 2015 Rev. Mod. Phys. 87 347
[3] González-Tudela A, Reiserer A, García-Ripoll J J and García-Vidal F J 2024 Nat. Rev. Phys. 6 166
[4] Lounis B and Orrit M 2005 Rep. Prog. Phys. 68 1129
[5] Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu E L and Imamoglu A 2007 Nature 445 896
[6] Laucht A, Villas-Bôs J M, Stobbe S, Hauke N, Hofbauer F, Böhm G, Lodahl P, Amann M C, Kaniber M and Finley J J 2010 Phys. Rev. B 82 075305
[7] Arcari M, Söllner I, Javadi A, Lindskov Hansen S, Mahmoodian S, Liu J, Thyrrestrup H, Lee E H, Song J D, Stobbe S and Lodahl P 2014 Phys. Rev. Lett. 113 093603
[8] Törmä P and Barnes W L 2015 Rep. Prog. Phys. 78 013901
[9] Dutta H S, Goyal A K, Srivastava V and Pal S 2016 Photonics Nanostruct. Fundam. Appl. 20 41
[10] Senellart P, Solomon G and White A 2017 Nat. Nanotechnol. 12 1026
[11] Dovzhenko D S, Ryabchuk S V, Rakovich Y P and Nabiev I R 2018 Nanoscale 10 3589
[12] Bitton O, Gupta S N and Haran G 2019 Nanophotonics 8 559
[13] Scarpelli L, Lang B, Masia F, Beggs D M, Muljarov E A, Young A B, Oulton R, Kamp M, Höfling S, Schneider C and Langbein W 2019 Phys. Rev. B 100 035311
[14] Arakawa Y and Holmes M J 2020 Appl. Phys. Rev. 7 021309
[15] Tiranov A, Angelopoulou V, van Diepen C J, Schrinski B, Sandberg O A D A,Wang Y, Midolo L, Scholz S,Wieck A D, Ludwig A, Sfrensen A S and Lodahl P 2023 Science 379 389
[16] Heindel T, Kim J H, Gregersen N, Rastelli A and Reitzenstein S 2023 Adv. Opt. Photonics 15 613
[17] LuoW, Cao L, Shi Y,Wan L, Zhang H, Li S, Chen G, Li Y, Li S,Wang Y, Sun S, Karim M F, Cai H, Kwek L C and Liu A Q 2023 Light Sci. Appl. 12 175
[18] Englund D, Shields B, Rivoire K, Hatami F, Vučković J, Park H and Lukin M D 2010 Nano Lett. 10 3922
[19] Faraon A, Santori C, Huang Z, Acosta V M and Beausoleil R G 2012 Phys. Rev. Lett. 109 033604
[20] Hausmann B J M, Shields B J, Quan Q, Chu Y, de Leon N P, Evans R, Burek M J, Zibrov A S, Markham M, Twitchen D J, Park H, Lukin M D and Loncǎr M 2013 Nano Lett. 13 5791
[21] Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A and Xu X 2015 Nature 520 69
[22] Pyatkov F, Fütterling V, Khasminskaya S, Flavel B S, Hennrich F, Kappes M M, Krupke R and Pernice W H P 2016 Nat. Photonics 10 420
[23] Hwang M S, Kim H R, Kim K H, Jeong K Y, Park J S, Choi J H, Kang J H, Lee J M, Park W I, Song J H, Seo M K and Park H G 2017 Nano Lett. 17 1892
[24] Ota Y, Moriya R, Yabuki N, Arai M, Kakuda M, Iwamoto S, Machida T and Arakawa Y 2017 Appl. Phys. Lett. 110 223105
[25] Gopinath A, Miyazono E, Faraon A and Rothemund P W K 2016 Nature 535 401
[26] Chen L H, Chen G, Liu R and Wang X H 2019 Sci. China Phys. Mech. Astron. 62 974211
[27] Chen G, Liu J F, Liu R, Liu G, Chen Y, Chen Z and Wang X H 2020 Phys. Rev. A 101 013828
[28] Liu J, Chen G, Li L, Liu R, Li W, Liu G, Wu F and Chen Y 2022 Sci. Rep. 12 6901
[29] ScullyMO and ZubairyMS 1997 Quantum Optics (Cambridge: Cambridge University Press)
[30] Hughes S and Yao P 2009 Opt. Express 17 3322
[31] Yu Y C, Liu J F, Zhuo X L, Chen G, Jin C J and Wang X H 2013 Opt. Express 21 23486
[32] Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press)
[33] Akahane Y, Asano T, Song B S and Noda S 2003 Nature 425 944
[34] Minkov M and Savona V 2014 Sci. Rep. 4 5124
[35] Benevides R, Santos F G S, Luiz G O, Wiederhecker G S and Alegre T P M 2017 Sci. Rep. 7 2491
[36] Wang X H, Wang R, Gu B Y and Yang G Z 2002 Phys. Rev. Lett. 88 093902
[37] Wang X H, Gu B Y, Wang R and Xu H Q 2003 Phys. Rev. Lett. 91 113904
[38] Chen G, Yu Y C, Zhuo X L, Huang Y G, Jiang H, Liu J F, Jin C J and Wang X H 2013 Phys. Rev. B 87 195138
[39] Sullivan D M 2013 Electromagnetic Simulation Using the FDTD Method 2nd Edn. (Wiley)
[40] Chen G, Liu J F, Jiang H, Zhuo X L, Yu Y C, Jin C andWang X H 2013 Nanoscale Res. Lett. 8 187
[41] Chak P, Iyer R, Aitchison J S and Sipe J E 2007 Phys. Rev. E 75 016608
[42] Xu Y, Vučković J S, Lee R K, Painter O J, Scherer A and Yariv A 1999 J. Opt. Soc. Am. B 16 465
[43] Chen G, Liu J F, Jiang H X, Liu G, Chen Y, Chen Z and Wang X H 2019 J. Phys. B: At. Mol. Opt. Phys. 52 035503
[1] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[2] Merging and separation of polarization singularities in complex lattices
Mengyao Wang(王梦瑶), Tian Shi(石天), Luhui Ning(宁鲁慧), Peng Liu(刘鹏), Liangsheng Li(李粮生), and Ning Zheng(郑宁). Chin. Phys. B, 2025, 34(3): 037303.
[3] Topological slow light and rainbow trapping of surface wave in valley photonic crystal bounded by air
Shuheng Chen(陈书恒), Yi Qi(齐奕), Yucen Li(李昱岑), Qihao Wang(王琪皓), and Yuanjiang Xiang(项元江). Chin. Phys. B, 2024, 33(11): 118701.
[4] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[5] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[6] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[7] Spontaneous emission from Λ-type three-level atom driven by bichromatic field in anisotropic double-band photonic crystals
Kai Ling(凌凯), Li Jiang(姜丽), Ren-Gang Wan(万仁刚), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2023, 32(4): 044211.
[8] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[9] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[10] Topological resonators based on hexagonal-star valley photonic crystals
Xin Wan(万鑫), Chenyang Peng(彭晨阳), Gang Li(李港), Junhao Yang(杨俊豪), and Xinyuan Qi(齐新元). Chin. Phys. B, 2023, 32(11): 114208.
[11] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[12] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[13] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[14] Optical spectroscopy study of damage evolution in 6H-SiC by H2+ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[15] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
No Suggested Reading articles found!