Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 038701    DOI: 10.1088/1674-1056/acef02
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Terahertz toroidal dipole metamaterial sensors for detection of aflatoxin B1

Jianwei Xu(徐建伟)1, Shoujian Ouyang(欧阳收剑)1, Shouxin Duan(段守鑫)1, Liner Zou(邹林儿)1, Danni Ye(叶丹妮)2,†, Sijia Yang(杨思嘉)3,‡, and Xiaohua Deng(邓晓华)3
1 Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China;
2 Department of Measuring and Controlling Technology and Instrument, Institute of Advanced Manufacturing, Nanchang University, Nanchang 330031, China;
3 Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China
Abstract  Terahertz metamaterial biosensors have attracted significant attention in the biological field due to their advantages of label-free, real-time and in situ detection. In this paper, a highly sensitive metamaterial sensor with semi-ring mirror symmetry based on toroidal dipole resonance is designed for a new metamaterial biosensor. It is shown that a refractive index sensitivity of 337.5 GHz per refractive index unit can be achieved under an analyte of saturated thickness near a 1.33 THz transmission dip. For biosensor samples where aflatoxin B1 is dropped on the metamaterial surface in our experiment, dip amplitudes of transmission varying from 0.1904 to 0.203 and 0.2093 are observed as aflatoxin B1 concentrations are altered from 0 to 0.001 μg·ml-1 and to 0.01 μg·ml-1, respectively. Furthermore, when aflatoxin B1 concentrations are 0.1 μg·ml-1, 1 μg·ml-1, 10 μg·ml-1 and 100 μg·ml-1, dip amplitudes of 0.2179, 0.226, 0.2384 and 0.2527 and dip redshifts of 10.1 GHz, 20.1 GHz, 27.7 GHz and 37.6 GHz are respectively observed. These results illustrate high-sensitivity, label-free detection of aflatoxin B1, enriching the applications of sensors in the terahertz domain.
Keywords:  terahertz      metamaterial      toroidal dipole      aflatoxin B1  
Received:  13 April 2023      Revised:  28 July 2023      Accepted manuscript online:  11 August 2023
PACS:  87.50.U-  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  87.85.fk (Biosensors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61927813, 61865009, and 12104203) and Jiangxi Provincial Natural Science Foundation (Grant No. 20212ACB201007).
Corresponding Authors:  Danni Ye, Sijia Yang     E-mail:  862090721@qq.com;sjyang@ncu.edu.cn

Cite this article: 

Jianwei Xu(徐建伟), Shoujian Ouyang(欧阳收剑), Shouxin Duan(段守鑫), Liner Zou(邹林儿), Danni Ye(叶丹妮), Sijia Yang(杨思嘉), and Xiaohua Deng(邓晓华) Terahertz toroidal dipole metamaterial sensors for detection of aflatoxin B1 2024 Chin. Phys. B 33 038701

[1] Ahmadivand A, Gerislioglu B, Tomitaka A, Manickam P, Kaushik A, Bhansali S, Nair M and Pala N 2018 Biomed. Opt. Express 9 373
[2] Narasimhan V, Siddique R H, Hoffmann M, Kumar S and Choo H 2019 Nanoscale 11 13750
[3] Wang Y G, Zhao Z S, Qin J Y, Liu H, Liu A F and Xu M M 2020 Talanta 208 120469
[4] Wang Y, Cui Z J, Zhang X J, Zhang D C, Zhang X, Zhou T and Wang X 2021 Acta Phys. Sin. 70 301 (in Chinese)
[5] Islam S S, Hasan M M and Faruque M R I 2018 Appl. Phys. A 124 1
[6] Mollae M S M and Simovski C 2019 Phys. Rev. B 100 205426
[7] Ren Z B, Liu R Y, Zhang Y C, Lu H S, Li F Y, Liu Y X, Hong X L and Guo Y 2021 Opt. Commun. 497 127159
[8] Deng G S, Xia T Y, Yang J and Yin Z P 2017 J. Electromagn Waves Appl. 31 2016
[9] Xu W D, Xie L J, Zhu J F, Wang W, Ye Z Z, Ma Y G, Tsai C Y, Chen S M and Ying Y B 2017 Food Chem. 218 330
[10] Liu J, Zhang T R, Tan Z Y, Cheng J R, Chang S J and Fan F 2023 Opt. Lett. 48 440
[11] Shi W N, Fan F, Ma L, Zhang T R, Liu J Y, Cheng J R, Wang X H and Chang S J 2023 Optics & Laser Technology 162 109274
[12] Shi W N, Fan F, Li S S, Zhang Z Y, Liu H L, Wang X H and Chang S J 2022 Sensors and Actuators B: Chemical 362 131777
[13] Zhang Z N, Fan F, Shi W N, Zhang T R and Chang S J 2022 Biomed. Opt. Express 13 209
[14] Shi W N, Fan F, Zhang T R, Liu J Y, Wang X H and Chang S J 2023 Biomed. Opt. Express 14 1096
[15] Wang R D, Xu L, Wang J Y, Sun L, Jiao Y N, Meng Y, Chen S, Chang C and Fan C H 2021 Nanoscale 13 18467
[16] Farmani A, Mir A, Bazgir M and Zarrabi F B 2018 Physica E 104 233
[17] Liu G D, Zhai X, Wang L L, Lin Q, Xia S X, Luo X and Zhao C J 2017 Plasmonics (Norwell, Mass.) 13 15
[18] Zhang B H, Wang L L, Li H J, Zhai X and Xia S X 2016 Journal of Optics 18 65001
[19] Wu C, Khanikaev A B, Adato R, Arju N, Yanik A A, Altug H and Shvets G 2012 Nat. Mater. 11 69
[20] Yu D M, Wang L L, Lin Q, Zhai X, Li H J and Xia S X 2016 Appl. Phys. Express 9 54301
[21] Vafapour Z 2017 Opt. Commun. 387 1
[22] Huang Z, Dai Y Y, Su G X, Yan Z D, Zhan P, Liu F X and Wang Z L 2018 Plasmonics 13 451
[23] Zhang J, Mu N, Liu L H, Xie J H, Feng H, Yao J Q, Chen T N and Zhu W R 2021 Biosensors and Bioelectronics 185 113241
[24] Zhang C B, Xue T J, Zhang J, Liu L H, Xie J H, Wang G M, Yao J Q, Zhu W R and Ye X D 2021 Nanophotonics (Berlin, Germany) 11 101
[25] Ye Q W, Guo L Y, Li M H, Liu Y, Xiao B X and Yang H L 2013 Phys. Scr. 88 55002
[26] Yang S Y, Liu Z, Jin L, Li W X, Zhang S, Li J J and Gu C Z 2017 ACS Photonics 4 2650
[27] Ahmadivand A, Gerislioglu B, Noe G T and Mishra Y K 2019 ACS Appl. Electron Mater. 1 637
[28] Chen X and Fan W H 2019 J. Phys. D: Appl. Phys. 52 485104
[29] Chen X and Fan W H 2017 Opt. Lett. 42 2034
[30] Saadeldin A S, Hameed M F O, Elkaramany E M A and Obayya S S A 2019 IEEE Sens J. 19 7993
[31] Pan W, Yan Y J, Ma Y and Shen D J 2019 Opt. Commun. 431 115
[32] Zhu L, Li H D, Dong L, Zhou W J, Rong M X, Zhang X Z and Guo J 2021 Opt. Mater. Express 11 2109
[33] Xiong Z G, Shang L P, Yang J P, Chen L Y, Guo J, Liu Q C, Danso S A and Li G L 2021 IEEE Access 9 59211
[34] Wang G Q, Zhu F J, Lang T T, Liu J J, Hong Z and Qin J Y 2021 Nanoscale Res. Lett. 16 1
[35] Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, Zhang M J, Wang T, Liu L H, Xie J H and Yao J Q 2019 Biosens. Bioelectron. 126 485
[36] Amate Ferrer C, Unterluggauer H, Fischer R J, Fernández-Alba A R and Masselter S 2010 Anal. Bioanal. Chem. 397 93
[37] Hojnik N, Modic M, Žigon D, Kovač J, Jurov A, Dickenson A, Walsh J L and Cvelbar U 2021 Plasma Process Polym. 18 2000163
[38] Azeez A Z, Hindi M T, Khudiar M M, AL Saadi A S and Khadim N I 2020 Journal of Food and Pharmaceutical Sciences 8 315
[39] Shar Z H, Pirkash O, Shar H H, Sherazi S and Mahesar S A 2020 Food Addit Contam Part B Surveill 13 72
[40] Vitaku E, Smith D T and Njardarson J T 2014 J. Med. Chem. 57 10257
[41] Maggira M, Sakaridis I, Ioannidou M and Samouris G 2022 Vet. Sci. 9 104
[42] Vita V, Franchino C, Iammarino M and De Pace R 2022 International Journal of Food Science & Technology 57 7496
[43] Murshed S A A, Bacha N and Alharazi T 2019 J. Food Qual. 2019 1614502
[44] Yoshida S, Zhang H Y, Takahashi R, Yoshida S, Abiko Y and Toriba A 2022 J. Chromatogr A 1678 463382
[45] Serafimovska T, Stefanovski S, Erler J, Keskovski Z, Stefkov G, Mitevska M, Darkovska Serafimovska M, Balkanov T and Tonic Ribarska J 2021 Front. Med. (Lausanne) 8 759856
[46] Ouakhssase A, Fatini N and Ait A E 2021 Food Addit Contam Part A Chem Anal Control Expo Risk Assess 38 1561
[47] Zhou L, Mao H J, Wu C Y, Tang L, Wu Z H, Sun H, Zhang H L, Zhou H B, Jia C P, Jin Q H, Chen X F and Zhao J L 2017 Biosensors and Bioelectronics 87 701
[1] General three-dimensional thermal illusion metamaterials
Tianfeng Liu(刘天丰), Zhaochen Wang(王兆宸), Zhan Zhu(朱展), and Run Hu(胡润). Chin. Phys. B, 2024, 33(4): 044401.
[2] A flexible ultra-broadband multi-layered absorber working at 2 GHz-40 GHz printed by resistive ink
Tao Wang(汪涛), Yu-Lun Yan(闫玉伦), Gong-Hua Chen(陈巩华), Ying Li(李迎), Jun Hu(胡俊), and Jian-Bo Mao(毛剑波). Chin. Phys. B, 2024, 33(2): 024101.
[3] Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon
Si-Yu Tu(涂思语), De-Feng Liu(刘德峰), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), and Ke-Jia Wang(王可嘉). Chin. Phys. B, 2024, 33(1): 014211.
[4] Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬). Chin. Phys. B, 2023, 32(9): 094301.
[5] Design, fabrication and optimization of electromagnetic absorption metamaterials
Qi Lou(娄琦), Xu-Dong Zhang(张旭东), and Ming-Gang Xia(夏明岗). Chin. Phys. B, 2023, 32(9): 094102.
[6] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[7] Ultraviolet metalens and metalens array of focused vortex beams
Jinping Zhang(张金平), Yan Wang(王焱), Huan Yuan(袁欢), Zehao Wang(王泽豪), Yang Deng(邓阳),Chengzhi Huang(黄承志), Jiagui Wu(吴加贵), and Junbo Yang(杨俊波). Chin. Phys. B, 2023, 32(6): 064206.
[8] Nonlinear mixing-based terahertz emission in inclined rippled density plasmas
K Gopal, A P Singh, and S Divya. Chin. Phys. B, 2023, 32(6): 065202.
[9] Designing radiative cooling metamaterials for passive thermal management by particle swarm optimization
Shenshen Yan(闫申申), Yan Liu(刘岩), Zi Wang(王子), Xiaohua Lan(兰晓华), Yi Wang(汪毅), and Jie Ren(任捷). Chin. Phys. B, 2023, 32(5): 057802.
[10] Integrated system of traditional THz time-domain spectroscopy and asynchronous optical sampling
Jing Ding(丁晶), Qing-Hao Meng(孟庆昊), Yan Shen(沈妍), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), Hai-Lin Cui(崔海林), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2023, 32(4): 048702.
[11] Nonlinear wave propagation in acoustic metamaterials with bilinear nonlinearity
Shiqi Liang(梁诗琪), Jiehui Liu(刘杰惠), Yun Lai(赖耘), and Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2023, 32(4): 044301.
[12] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[13] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[14] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[15] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
No Suggested Reading articles found!