Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046501    DOI: 10.1088/1674-1056/adbd13
DATA PAPER Prev   Next  

An ab initio dataset of size-dependent effective thermal conductivity for advanced technology transistors

Han Xie(谢涵)1,2, Ru Jia(贾如)3, Yonglin Xia(夏涌林)3, Lei Li(李磊)1, Yue Hu(胡跃)4, Jiaxuan Xu(徐家璇)3, Yufei Sheng(盛宇飞)3, Yuanyuan Wang(王元元)1,5,†, and Hua Bao(鲍华)6,‡
1 School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China;
2 Institute of Integrated Circuits, Shanghai Polytechnic University, Shanghai 201209, China;
3 University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China;
4 CTG Wuhan Science and Technology Innovation Park, China Three Gorges Corporation, Wuhan 430010, China;
5 Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Polytechnic University, Shanghai 201209, China;
6 Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  As the size of transistors shrinks and power density increases, thermal simulation has become an indispensable part of the device design procedure. However, existing works for advanced technology transistors use simplified empirical models to calculate effective thermal conductivity in the simulations. In this work, we present a dataset of size-dependent effective thermal conductivity with electron and phonon properties extracted from ab initio computations. Absolute in-plane and cross-plane thermal conductivity data of eight semiconducting materials (Si, Ge, GaN, AlN, 4H-SiC, GaAs, InAs, BAs) and four metallic materials (Al, W, TiN, Ti) with the characteristic length ranging from 5 nm to 50 nm have been provided. Besides the absolute value, normalized effective thermal conductivity is also given, in case it needs to be used with updated bulk thermal conductivity in the future.
Keywords:  size-dependent effective thermal conductivity      advanced technology transistors      ab initio computations      micro/nano-scale heat transfer  
Received:  20 November 2024      Revised:  07 January 2025      Accepted manuscript online:  06 March 2025
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the National Key R&D Project from Ministry of Science and Technology of China (Grant No. 2022YFA1203100), the National Natural Science Foundation of China (Grant No. 52122606), and the funding from Shanghai Polytechnic University.
Corresponding Authors:  Yuanyuan Wang, Hua Bao     E-mail:  wangyuanyuan@sspu.edu.cn;hua.bao@sjtu.edu.cn

Cite this article: 

Han Xie(谢涵), Ru Jia(贾如), Yonglin Xia(夏涌林), Lei Li(李磊), Yue Hu(胡跃), Jiaxuan Xu(徐家璇), Yufei Sheng(盛宇飞), Yuanyuan Wang(王元元), and Hua Bao(鲍华) An ab initio dataset of size-dependent effective thermal conductivity for advanced technology transistors 2025 Chin. Phys. B 34 046501

[1] Pop E 2010 Nano Res. 3 147
[2] Myeong I, Song I, KangMJ and Shin H 2020 IEEE Electron Dev. Lett. 41 977
[3] Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E and Shi L 2014 Appl. Phys. Rev. 1 011305
[4] Hua Y C and Cao B Y 2016 Int. J. Heat Mass Transf. 92 995
[5] Lü X, Shen W Z and Chu J H 2002 J. Appl. Phys. 91 1542
[6] Chen G 2001 Phys. Rev. Lett. 86 2297
[7] Chang C W, Okawa D, Garcia H, Majumdar A and Zettl A 2008 Phys. Rev. Lett. 101 075903
[8] Hua Y C, Li H L and Cao B Y 2019 IEEE Trans. Electron Dev. 66 3296
[9] Chen X and Tang D 2023 IEEE Trans. Compon. Packag. Manuf. Technol. 13 1929
[10] Ma X, Wang K, Chen J and Wang H 2024 IEEE Trans. Electron Dev. 1
[11] Cai L, Chen W, Du G, Zhang X and Liu X 2018 IEEE Trans. Electron Dev. 65 2647
[12] Venkateswarlu S, Badami O and Nayak K 2021 IEEE Trans. Electron Dev. 68 4723
[13] Mertens H, Ritzenthaler R, Chasin A, Schram T, Kunnen E, Hikavyy A, Ragnarsson L Å, Dekkers H, Hopf T, Wostyn K, Devriendt K, Chew S A, KimMS, Kikuchi Y, Rosseel E, Mannaert G, Kubicek S, Demuynck S, Dangol A, Bosman N, Geypen J, Carolan P, Bender H, Barla K, Horiguchi N and Mocuta D 2016 IEEE International Electron Devices Meeting (IEDM), pp. 19.7.1-19.7.4
[14] Yeo K H, Suk S D, Li M, Yeoh Y, Cho K H, Hong K H, Yun S, Lee M S, Cho N, Lee K, Hwang D, Park B, Kim D W, Park D and Ryu B I 2006 International Electron Devices Meeting pp. 1-4
[15] Rhyner R and Luisier M 2013 IEEE International Electron Devices Meeting, pp. 32.1.1-32.1.4
[16] Callaway J 1959 Phys. Rev. 113 1046
[17] Fan T and Oganov A R 2020 Comput. Phys. Commun. 251 107074
[18] Marconnet A M, Asheghi M and Goodson K E 2013 J. Heat Transf. 135 061601
[19] Anon 2022 Sentaurus Device User Guide (Mountain View, CA, USA: Synopsys)
[20] Li Y, Zhang T, Zhang Y, Zhao C, Zheng N and Yu W 2022 Int. Commun. Heat Mass Transf. 130 105764
[21] Jaffe G R, Smith K J,Watanabe K, Taniguchi T, LagallyMG, Eriksson M A and Brar V W 2023 ACS Appl. Mater. Interfaces 15 12545
[22] Ziade E, Yang J, Brummer G, Nothern D, Moustakas T and Schmidt A 2017 Appl. Phys. Lett. 110 031903
[23] Wang A and Bao H 2024 Appl. Phys. Lett. 124 212202
[24] Ziman J M 1960 Electrons and Phonons (Clarendon: Oxford University Press)
[25] Li S,Wang A, Hu Y, Gu X, Tong Z and Bao H 2020 Mater. Today Phys. 15 100256
[26] Xie H, Yan J, Gu X and Bao H 2019 J. Appl. Phys. 125 205104
[27] Hua C and Minnich A J 2015 J. Appl. Phys. 117
[28] Minnich A J 2012 Phys. Rev. Lett. 109
[29] Hu Y, Jia R, Xu J, Sheng Y, Wen M, Lin J, Shen Y and Bao H 2023 J. Phys. Condens. Matter 36 025901
[30] Li W, Carrete J, A. Katcho N and Mingo N 2014 Comput. Phys. Commun. 185 1747
[31] Poncé S, Margine E R, Verdi C and Giustino F 2016 Comput. Phys. Commun. 209 116
[32] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[33] Wang S, Zhang Y, Kim Y, Ren P and Ji Z 2024 IEEE International Reliability Physics Symposium (IRPS) pp. 1-6
[34] Glassbrenner C J and Slack G A 1964 Phys. Rev. 134 A1058
[35] Zheng Q 2019 Phys. Rev. Mater. 3
[36] Tang D S, Hua Y C, Zhou Y G and Cao B Y 2021 Acta Phys. Sin. 70 045101 (in Chinese)
[37] Slack G A, Tanzilli R A, Pohl R O and Vandersande J W 1987 J. Phys. Chem. Solids 48 641
[38] Jenny J R, Müller S G, Powell A, Tsvetkov V F, Hobgood H M, Glass R C and Carter C H 2002 J. Electron. Mater. 31 366
[39] Blakemore J S 1982 J. Appl. Phys. 53 R123
[40] Maycock P D 1967 Solid-State Electron. 10 161
[41] Kang J S, Li M, Wu H, Nguyen H and Hu Y 2018 Science 361 575
[42] Zhang A and Li Y 2023 Materials 16 2972
[43] Hu L, Wirth B D and Maroudas D 2017 Appl. Phys. Lett. 111 081902
[44] Powell R W, Ho C Y and Lilly P E 1966 Thermal Conductivity of Selected Materials (National Bureau of Standards)
[45] Saha B, Koh Y R, Feser J P, Sadasivam S, Fisher T S, Shakouri A and Sands T D 2017 J. Appl. Phys. 121 015109
[46] Zheng H and Jaganandham K 2014 J. Heat Transf. 136 061301
[47] Han Z, Yang X, Li W, Feng T and Ruan X 2022 Comput. Phys. Commun. 270 108179
[48] Feng T, Lindsay L and Ruan X 2017 Phys. Rev. B 96 161201
[49] Li C, Zhao C and Gu X 2023 Chin. Phys. B 32 064401
[50] Shi H X, Yang K K and Luo J W 2021 Acta Phys. Sin. 70 147302 (in Chinese)
[51] Wu C and Liu C 2023 Chin. Phys. B 32 056502
[52] Lindsay L, Broido D A and Reinecke T L 2013 Phys. Rev. B 87 165201
[53] Wang A, S
[1] Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意). Chin. Phys. B, 2024, 33(4): 046502.
[2] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[5] Advances of phononics in 2012—2022
Ya-Fei Ding(丁亚飞), Gui-Mei Zhu(朱桂妹), Xiang-Ying Shen(沈翔瀛),Xue Bai(柏雪), and Bao-Wen Li(李保文). Chin. Phys. B, 2022, 31(12): 126301.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[8] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[9] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[10] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[11] Thermodynamic and structural properties of polystyrene/C60 composites: A molecular dynamics study
Junsheng Yang(杨俊升), Ziliang Zhu(朱子亮), Duohui Huang(黄多辉), Qilong Cao(曹启龙). Chin. Phys. B, 2020, 29(2): 023104.
[12] Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2019, 28(8): 086501.
[13] Structural response of aluminum core-shell particles in detonation environment
Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Jian-Xin Nie(聂建新), Hong-Bo Pei(裴红波). Chin. Phys. B, 2019, 28(8): 088201.
[14] Thermal conductivity characterization of ultra-thin silicon film using the ultra-fast transient hot strip method
Yan-Yan Zhang(张燕燕), Ran Cheng(程然), Dong Ni(倪东), Ming Tian(田明), Ji-Wu Lu(卢继武), Yi Zhao(赵毅). Chin. Phys. B, 2019, 28(7): 078105.
[15] Accomplishment and challenge of materials database toward big data
Yibin Xu(徐一斌). Chin. Phys. B, 2018, 27(11): 118901.
No Suggested Reading articles found!