An ab initio dataset of size-dependent effective thermal conductivity for advanced technology transistors
Han Xie(谢涵)1,2, Ru Jia(贾如)3, Yonglin Xia(夏涌林)3, Lei Li(李磊)1, Yue Hu(胡跃)4, Jiaxuan Xu(徐家璇)3, Yufei Sheng(盛宇飞)3, Yuanyuan Wang(王元元)1,5,†, and Hua Bao(鲍华)6,‡
1 School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China; 2 Institute of Integrated Circuits, Shanghai Polytechnic University, Shanghai 201209, China; 3 University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China; 4 CTG Wuhan Science and Technology Innovation Park, China Three Gorges Corporation, Wuhan 430010, China; 5 Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Polytechnic University, Shanghai 201209, China; 6 Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract As the size of transistors shrinks and power density increases, thermal simulation has become an indispensable part of the device design procedure. However, existing works for advanced technology transistors use simplified empirical models to calculate effective thermal conductivity in the simulations. In this work, we present a dataset of size-dependent effective thermal conductivity with electron and phonon properties extracted from ab initio computations. Absolute in-plane and cross-plane thermal conductivity data of eight semiconducting materials (Si, Ge, GaN, AlN, 4H-SiC, GaAs, InAs, BAs) and four metallic materials (Al, W, TiN, Ti) with the characteristic length ranging from 5 nm to 50 nm have been provided. Besides the absolute value, normalized effective thermal conductivity is also given, in case it needs to be used with updated bulk thermal conductivity in the future.
Fund: Project supported by the National Key R&D Project from Ministry of Science and Technology of China (Grant No. 2022YFA1203100), the National Natural Science Foundation of China (Grant No. 52122606), and the funding from Shanghai Polytechnic University.
Corresponding Authors:
Yuanyuan Wang, Hua Bao
E-mail: wangyuanyuan@sspu.edu.cn;hua.bao@sjtu.edu.cn
Cite this article:
Han Xie(谢涵), Ru Jia(贾如), Yonglin Xia(夏涌林), Lei Li(李磊), Yue Hu(胡跃), Jiaxuan Xu(徐家璇), Yufei Sheng(盛宇飞), Yuanyuan Wang(王元元), and Hua Bao(鲍华) An ab initio dataset of size-dependent effective thermal conductivity for advanced technology transistors 2025 Chin. Phys. B 34 046501
[1] Pop E 2010 Nano Res. 3 147 [2] Myeong I, Song I, KangMJ and Shin H 2020 IEEE Electron Dev. Lett. 41 977 [3] Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E and Shi L 2014 Appl. Phys. Rev. 1 011305 [4] Hua Y C and Cao B Y 2016 Int. J. Heat Mass Transf. 92 995 [5] Lü X, Shen W Z and Chu J H 2002 J. Appl. Phys. 91 1542 [6] Chen G 2001 Phys. Rev. Lett. 86 2297 [7] Chang C W, Okawa D, Garcia H, Majumdar A and Zettl A 2008 Phys. Rev. Lett. 101 075903 [8] Hua Y C, Li H L and Cao B Y 2019 IEEE Trans. Electron Dev. 66 3296 [9] Chen X and Tang D 2023 IEEE Trans. Compon. Packag. Manuf. Technol. 13 1929 [10] Ma X, Wang K, Chen J and Wang H 2024 IEEE Trans. Electron Dev. 1 [11] Cai L, Chen W, Du G, Zhang X and Liu X 2018 IEEE Trans. Electron Dev. 65 2647 [12] Venkateswarlu S, Badami O and Nayak K 2021 IEEE Trans. Electron Dev. 68 4723 [13] Mertens H, Ritzenthaler R, Chasin A, Schram T, Kunnen E, Hikavyy A, Ragnarsson L Å, Dekkers H, Hopf T, Wostyn K, Devriendt K, Chew S A, KimMS, Kikuchi Y, Rosseel E, Mannaert G, Kubicek S, Demuynck S, Dangol A, Bosman N, Geypen J, Carolan P, Bender H, Barla K, Horiguchi N and Mocuta D 2016 IEEE International Electron Devices Meeting (IEDM), pp. 19.7.1-19.7.4 [14] Yeo K H, Suk S D, Li M, Yeoh Y, Cho K H, Hong K H, Yun S, Lee M S, Cho N, Lee K, Hwang D, Park B, Kim D W, Park D and Ryu B I 2006 International Electron Devices Meeting pp. 1-4 [15] Rhyner R and Luisier M 2013 IEEE International Electron Devices Meeting, pp. 32.1.1-32.1.4 [16] Callaway J 1959 Phys. Rev. 113 1046 [17] Fan T and Oganov A R 2020 Comput. Phys. Commun. 251 107074 [18] Marconnet A M, Asheghi M and Goodson K E 2013 J. Heat Transf. 135 061601 [19] Anon 2022 Sentaurus Device User Guide (Mountain View, CA, USA: Synopsys) [20] Li Y, Zhang T, Zhang Y, Zhao C, Zheng N and Yu W 2022 Int. Commun. Heat Mass Transf. 130 105764 [21] Jaffe G R, Smith K J,Watanabe K, Taniguchi T, LagallyMG, Eriksson M A and Brar V W 2023 ACS Appl. Mater. Interfaces 15 12545 [22] Ziade E, Yang J, Brummer G, Nothern D, Moustakas T and Schmidt A 2017 Appl. Phys. Lett. 110 031903 [23] Wang A and Bao H 2024 Appl. Phys. Lett. 124 212202 [24] Ziman J M 1960 Electrons and Phonons (Clarendon: Oxford University Press) [25] Li S,Wang A, Hu Y, Gu X, Tong Z and Bao H 2020 Mater. Today Phys. 15 100256 [26] Xie H, Yan J, Gu X and Bao H 2019 J. Appl. Phys. 125 205104 [27] Hua C and Minnich A J 2015 J. Appl. Phys. 117 [28] Minnich A J 2012 Phys. Rev. Lett. 109 [29] Hu Y, Jia R, Xu J, Sheng Y, Wen M, Lin J, Shen Y and Bao H 2023 J. Phys. Condens. Matter 36 025901 [30] Li W, Carrete J, A. Katcho N and Mingo N 2014 Comput. Phys. Commun. 185 1747 [31] Poncé S, Margine E R, Verdi C and Giustino F 2016 Comput. Phys. Commun. 209 116 [32] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [33] Wang S, Zhang Y, Kim Y, Ren P and Ji Z 2024 IEEE International Reliability Physics Symposium (IRPS) pp. 1-6 [34] Glassbrenner C J and Slack G A 1964 Phys. Rev. 134 A1058 [35] Zheng Q 2019 Phys. Rev. Mater. 3 [36] Tang D S, Hua Y C, Zhou Y G and Cao B Y 2021 Acta Phys. Sin. 70 045101 (in Chinese) [37] Slack G A, Tanzilli R A, Pohl R O and Vandersande J W 1987 J. Phys. Chem. Solids 48 641 [38] Jenny J R, Müller S G, Powell A, Tsvetkov V F, Hobgood H M, Glass R C and Carter C H 2002 J. Electron. Mater. 31 366 [39] Blakemore J S 1982 J. Appl. Phys. 53 R123 [40] Maycock P D 1967 Solid-State Electron. 10 161 [41] Kang J S, Li M, Wu H, Nguyen H and Hu Y 2018 Science 361 575 [42] Zhang A and Li Y 2023 Materials 16 2972 [43] Hu L, Wirth B D and Maroudas D 2017 Appl. Phys. Lett. 111 081902 [44] Powell R W, Ho C Y and Lilly P E 1966 Thermal Conductivity of Selected Materials (National Bureau of Standards) [45] Saha B, Koh Y R, Feser J P, Sadasivam S, Fisher T S, Shakouri A and Sands T D 2017 J. Appl. Phys. 121 015109 [46] Zheng H and Jaganandham K 2014 J. Heat Transf. 136 061301 [47] Han Z, Yang X, Li W, Feng T and Ruan X 2022 Comput. Phys. Commun. 270 108179 [48] Feng T, Lindsay L and Ruan X 2017 Phys. Rev. B 96 161201 [49] Li C, Zhao C and Gu X 2023 Chin. Phys. B 32 064401 [50] Shi H X, Yang K K and Luo J W 2021 Acta Phys. Sin. 70 147302 (in Chinese) [51] Wu C and Liu C 2023 Chin. Phys. B 32 056502 [52] Lindsay L, Broido D A and Reinecke T L 2013 Phys. Rev. B 87 165201 [53] Wang A, S
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.