Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118901    DOI: 10.1088/1674-1056/27/11/118901
Special Issue: TOPICAL REVIEW — Physics research in materials genome
TOPICAL REVIEW—Physics research in materials genome Prev   Next  

Accomplishment and challenge of materials database toward big data

Yibin Xu(徐一斌)
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
Abstract  

The history and current status of materials data activities from handbook to database are reviewed, with introduction to some important products. Through an example of prediction of interfacial thermal resistance based on data and data science methods, we show the advantages and potential of material informatics to study material issues which are too complicated or time consuming for conventional theoretical and experimental methods. Materials big data is the fundamental of material informatics. The challenges and strategy to construct materials big data are discussed, and some solutions are proposed as the results of our experiences to construct National Institute for Materials Science (NIMS) materials databases.

Keywords:  material database      big data      material informatics      machine learning      interfacial thermal resistance      material identification  
Received:  04 June 2018      Revised:  16 September 2018      Accepted manuscript online: 
PACS:  89.20.Ff (Computer science and technology)  
  01.65.+g (History of science)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: 

Project supported by "Materials Research by Information Integration" Initiative (MI2I) project of the Support Program for Starting Up Innovation Hub from Japan Science and Technology Agency (JST).

Corresponding Authors:  Yibin Xu     E-mail:  xu.yibin@nims.go.jp

Cite this article: 

Yibin Xu(徐一斌) Accomplishment and challenge of materials database toward big data 2018 Chin. Phys. B 27 118901

[1] Luckenbach R 1981 J. Chem. Inf. Comput. Sci. 21 82
[2] Reaxys, Elsevier, https://www.elsevier.com/solutions/reaxys[2018-05-25]
[3] SpringerMaterials-The Landolt-Börnstein Database, SpringerMateri-als, Customer Presentation, 2009
[4] SpringerMaterials, https://materials.springer.com[2018-05-25]
[5] Journal of Physical and Chemical Reference Data, https://www.nist.gov/srd/journal-physical-and-chemical-reference-data-jpcrd[2018-05-25]
[6] Creep data sheet, http://smds.nims.go.jp/creep/indexen.html[2018-05-25]
[7] Fatigue data sheet, http://smds.nims.go.jp/fatigue/indexen.html[2018-05-25]
[8] Corrosion data sheet, http://smds.nims.go.jp/corrosion/indexen.html[2018-05-25]
[9] ASM handbooks, https://www.asminternational.org/handbooks[2018-05-25]
[10] Touloukian Y S and Ho C Y 1970 Thermophysical Properties of Matter, the TPRC Data Series (Purdue University)
[11] Codd E F 1972 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.9277[2018-05-25]
[12] The Pauling File project, http://paulingfile.com/index.php?p=scope#thePAULINGFILEproject[2018-05-25]
[13] Inorganic materials database AtomWork, http://crystdb.nims.go.jp/indexen.html[2018-05-25]
[14] Inorganic materials database AtomWork Adv., https://atomworkadv.nims.go.jp[2018-05-28]
[15] NIMS materials database MatNavi, http://mits.nims.go.jp/indexen.html[2018-05-25]
[16] NOMAD repository, http://nomad-repository.eu[2018-05-25]
[17] The Materials Project, https://materialsproject.org[2018-05-25]
[18] Materials Research by Information Integration Initiative Data Platform,https://mi2i.nims.go.jp/en[2018-05-25]
[19] Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605
[20] Zhan T, Fang L and Xu Y 2017 Sci. Rep. 7 7109
[21] Xu Y, Kato R and Goto M 2010 J. Appl. Phys. 108 104317
[22] Zhan T, Xu Y, Goto M, Tanaka Y, Kato R and Sasaki M 2015 RSC Adv. 5 49703
[23] MatML, https://www.matml.org/overview.htm[2018-09-16]
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[5] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[6] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[9] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[10] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[11] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[12] Restricted Boltzmann machine: Recent advances and mean-field theory
Aurélien Decelle, Cyril Furtlehner. Chin. Phys. B, 2021, 30(4): 040202.
[13] Stability analysis of hydro-turbine governing system based on machine learning
Yuansheng Chen(陈元盛) and Fei Tong(仝飞). Chin. Phys. B, 2021, 30(12): 120509.
[14] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[15] Machine learning in materials design: Algorithm and application
Zhilong Song(宋志龙), Xiwen Chen(陈曦雯), Fanbin Meng(孟繁斌), Guanjian Cheng(程观剑), Chen Wang(王陈), Zhongti Sun(孙中体), and Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(11): 116103.
No Suggested Reading articles found!