Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 088201    DOI: 10.1088/1674-1056/28/8/088201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structural response of aluminum core-shell particles in detonation environment

Qing-Jie Jiao(焦清介)1, Qiu-Shi Wang(王秋实)1, Jian-Xin Nie(聂建新)1, Hong-Bo Pei(裴红波)2
1 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
2 China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang 621900, China
Abstract  Natural aluminum particles have the core-shell structure. The structure response refers to the mechanical behavior of the aluminum particle structure caused by external influences. The dynamic behavior of the structural response of aluminum core-shell particles before combustion is of great importance for the aluminum powder burning mechanism and its applications. In this paper, an aluminum particle combustion experiment in a detonation environment is conducted and analyzed; the breakage factors of aluminum particles shell in detonation environment are analyzed. The experiment results show that the aluminum particle burns in a gaseous state and condenses into a sub-micron particle cluster. The calculation and simulation demonstrate that the rupture of aluminum particle shell in the detonation environment is mainly caused by the impact of the detonation wave. The detonation wave impacts the aluminum particles, resulting in shell cracking, and due to the shrinkage-expansion of the aluminum core and stripping of the detonation product, the cracked shell is fractured and peeled with the aluminum reacting with the detonation product.
Keywords:  aluminum core-shell particles      structural response      aluminum combustion      aluminized explosives  
Received:  21 May 2019      Revised:  13 June 2019      Accepted manuscript online: 
PACS:  82.33.Vx (Reactions in flames, combustion, and explosions)  
  47.40.Rs (Detonation waves)  
  47.70.Pq (Flames; combustion)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11772058).
Corresponding Authors:  Jian-Xin Nie     E-mail:  niejx@bit.edu.cn

Cite this article: 

Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Jian-Xin Nie(聂建新), Hong-Bo Pei(裴红波) Structural response of aluminum core-shell particles in detonation environment 2019 Chin. Phys. B 28 088201

[1] Keshavarz M H 2005 Combust. Flame 142 303
[2] Peuker M, Krier H and Glumac N 2013 Proc. Combust. Inst. 34 2205
[3] Ruggirello K P, DesJardin P E, Baer M R, Kaneshige M J and Hertel E S 2012 Int. J. Multiphase Flow 42 128
[4] Keicher T, Happ A, Kretschmer A, Sirringhaus U and Wild R 1999 Propellants Explos. Pyrotech 24 140
[5] Firmansyah D A, Sullivan K, Lee K S, Kim Y H, Zahaf R, Zachariah M R and Lee D 2011 J. Phys. Chem. C 116 404
[6] Eisenreich N, Fietzek H, Juez-Lorenzo M, Kolarik V, Koleczko A and Weiser V 2004 Propellants Explos. Pyrotech 29 137
[7] Hasani S, Panjepour M and Shamanian M 2012 Oxidation Met. 78 179
[8] Hasani S, Panjepour M and Shamanian M 2014 Oxidation Met. 81 299
[9] Korshunov A V, Il'In A P, Radishevskaya N I and Morozova T P 2010 Russ. J. Phys. Chem. A 84 1576
[10] Eisenreich N, Fietzek H, Juez-Lorenzo M, Kolarik V, Weiser V and Koleczko A 2005 High Temp. 22 329
[11] Dreizin E L 1996 Combust. Flame 105 541
[12] Trunov M A, Schoenitz M and Dreizin E L 2005 Propellants Explos. Pyrotech. 30 36
[13] Trunov M A, Schoenitz M, Zhu X and Dreizin E L 2005 Combust. Flame 140 310
[14] Trunov M A, Schoenitz M and Dreizin E L 2006 Combust. Thero. Model 10 603
[15] Levin I and Brandon D 2005 J. Am. Ceram. Soc. 81 1995
[16] Brandstadt K, Frost D L and Kozinski J A 2009 Proc. Combust. Inst. 32 1913
[17] Liu Y, Ren H and Jiao Q J 2017 IOP Conf. Ser.: Mater. Sci. Eng. 248 012002
[18] Glassman I 1959 Metal Combustion Processes, American Rocket Society Preprint, New York
[19] Brzustowski T A, Glassman I 1964 Heterogeneous Combustion, (New York: Academic Press)
[20] Law C K 1973 Combust. Sci. Technol. 7 197
[21] Brooks K P and Beckstead M W 1995 J. Propul. Power 11 769
[22] Olsen S E and Beckstead M W 1996 J. Propul. Power 12 662
[23] Allen D, Krier H and Glumac N 2014 Combust. Flame 161 295
[24] Lokenbakh A K, Zaporina N A, Knipele A Z, Strod V V and Lepin L K 1985 Combust. Explo. Shock 21 69
[25] Boiko V M, Lotov V V and Papyrin A N 1989 Combust. Explo. Shock 25 193
[26] Rozenb, V I and Vaganova N I 1992 Combust. Flame 88 113
[27] Zhang S and Dreizin E L 2013 J. Phys. Chem. 117 14025
[28] Nie H, Zhang S, Schoenitz M and Dreizin E L 2013 Int. J. Hydrogen Energy 38 11222
[29] Shang J F and Zheng F Y 1991 Lang's Handbook of Chemistry (Translated version) (Beijing: Science Press) p. 72 (in Chinese)
[30] Sun Y B, Hui J M and Cao X M 1995 Military Mixed Explosive (Beijing: Publishing House of Ordnance Industry) p. 96 (in Chinese)
[31] Sućeska M 2015 Explo5 Program (version 6.03), Zagreb
[32] Lee E L, Hornig H C and Kury J W 1995 “High strain rate properties and constitutive modeling of glass”, Report published by Sandia National Laboratories
[33] Dieter G E and Bacon D J 1986 Mechanical metallurgy (New York: McGraw-hill) p. 53
[34] Holmquist T J, Johnson G R, Lopatin C M, Grady D E and Hertel E S 1995 “High strain rate properties and constitutive modeling of glass”, Report published by Sandia National Laboratories
[1] Studies on aluminum powder combustion in detonation environment
Jian-Xin Nie(聂建新), Run-Zhe Kan(阚润哲), Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Xue-Yong Guo(郭学永), and Shi Yan(闫石). Chin. Phys. B, 2022, 31(4): 044703.
[2] Effects of heat loss and viscosity friction at walls on flame acceleration and deflagration to detonation transition
Jin Huang(黄金), Wenhu Han(韩文虎), Xiangyu Gao(高向宇), Cheng Wang(王成). Chin. Phys. B, 2019, 28(7): 074704.
[3] Theoretical analysis on deflagration-to-detonation transition
Yun-Feng Liu(刘云峰), Huan Shen(沈欢), De-Liang Zhang(张德良), Zong-Lin Jiang(姜宗林). Chin. Phys. B, 2018, 27(8): 084703.
[4] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[5] Effect of plasma on combustion characteristics of boron
Peng Zhang(张鹏), Wenli Zhong(钟文丽), Qian Li(李倩), Bo Yang(杨波), Zhongguang Li(李忠光), Xiao Luan(栾骁). Chin. Phys. B, 2017, 26(11): 110501.
[6] Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme
Yang Shen(沈洋), Hua Shen(申华), Kai-Xin Liu(刘凯欣), Pu Chen(陈 璞), De-Liang Zhang(张德良). Chin. Phys. B, 2016, 25(11): 114702.
[7] Combustion of a single magnesium particle in water vapor
Huang Li-Ya (黄利亚), Xia Zhi-Xun (夏智勋), Zhang Wei-Hua (张为华), Huang Xu (黄序), Hu Jian-Xin (胡建新). Chin. Phys. B, 2015, 24(9): 094702.
[8] Statistical model for combustion of high-metal magnesium-based hydro-reactive fuel
Hu Jian-Xin (胡建新), Han Chao (韩超), Xia Zhi-Xun (夏智勋), Huang Li-Ya (黄利亚), Huang Xu (黄序). Chin. Phys. B, 2012, 21(12): 124501.
[9] Scaling of the flowfield in a combustion chamber with a gas--gas injector
Wang Xiao-Wei(汪小卫), Cai Guo-Biao(蔡国飙), and Jin Ping(金平). Chin. Phys. B, 2010, 19(1): 019401.
[10] Study of tungsten wire array Z-pinch implosion on Qiang-Guang I facility
Xu Rong-Kun (徐荣昆), Li Zheng-Hong (李正宏), Yang Jian-Lun (杨建伦), Xu Ze-Ping (许泽平), Ding Ning (丁宁), Guo Cun (郭存), Jiang Shi-Lun (蒋世伦), Ning Jia-Min (宁佳敏), Xia Guang-Xin (夏广新), Li Lin-Bo (李林波), Song Feng-Jun (宋风军), Chen Jin-Chuan (陈进川). Chin. Phys. B, 2005, 14(8): 1613-1617.
No Suggested Reading articles found!