Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 037403    DOI: 10.1088/1674-1056/adacd2
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Exploring Lifshitz transition and superconductivity in 3R-NbS2 under pressure

Kun Chen(陈坤)1, Xindeng Lv(吕心邓)1, Simin Li(李思敏)1, Yanping Huang(黄艳萍)1,†, and Tian Cui(崔田)1,2
1 Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  The interplay between electronic topological phase transitions and superconductivity in the field of condensed matter physics has consistently captivated researchers. Here we have succeeded in modulating the Lifshitz transition by pressure and realized superconductivity. At 25.7 GPa, superconductivity with a transition temperature of 1.9 K has been observed in 3R-NbS2. The Hall coefficient changes from negative to positive at 14 GPa, indicating a Lifshitz transition in 3R-NbS2, and the carrier concentration continues to increase with increasing pressure. X-ray diffraction results indicate that the appearance of superconductivity cannot be attributable to structural transitions. Based on theoretical calculations, the emergence of a new band is attributed to the Lifshitz transition and the new band coincides with the Fermi surface at the pressure of 30 GPa. These findings provide new insights into the relationship between the Lifshitz transition and superconductivity.
Keywords:  high pressure      superconductivity      Lifshitz transition      3R-NbS2  
Received:  29 December 2024      Revised:  20 January 2025      Accepted manuscript online:  22 January 2025
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  91.60.Gf (High-pressure behavior)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1405500), the National Natural Science Foundation of China (Grant Nos. 52072188 and 12304072), Program for Science and Technology Innovation Team in Zhejiang (Grant No. 2021R01004), and the Natural Science Foundation of Ningbo (Grant No. 2021J121).
Corresponding Authors:  Yanping Huang     E-mail:  huangyanping@nbu.edu.cn

Cite this article: 

Kun Chen(陈坤), Xindeng Lv(吕心邓), Simin Li(李思敏), Yanping Huang(黄艳萍), and Tian Cui(崔田) Exploring Lifshitz transition and superconductivity in 3R-NbS2 under pressure 2025 Chin. Phys. B 34 037403

[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[2] Yin J, Ma W, Cochran T A, et al. 2020 Nature 583 533
[3] Xu S, Xia Y, Wray L A, Jia S, Meier F, Dil J H, Osterwalder J, Slomski B, Bansil A, Lin H, Cava R J and Hasan M Z 2011 Science 332 560
[4] Xu S, Liu C, Alidoust N, et al. 2012 Nat. Commun. 3 1192
[5] Verbin M, Zilberberg O, Kraus Y E, Lahini Y and Silberberg Y 2013 Phys. Rev. Lett. 110 076403
[6] Wu Y, Jo N H, Ochi M, Huang L, Mou D, Bud’ko S L, Canfield P C, Trivedi N, Arita R and Kaminski A 2015 Phys. Rev. Lett. 115 166602
[7] Zhang Y, Wang C, Yu L, et al. 2017 Nat. Commun. 8 15512
[8] Chi Z, Zhang J, Gong Z, Peng F, Wang X, Dong G, Li Y, Shi Y, Ge Y, Yang X, Zhang Z, Xu G, Hao N, Zhou C and Qin J 2024 Mater. Today Phys. 42 101372
[9] Nishimura T, Sakai H, Mori H, et al. 2019 Phys. Rev. Lett. 122 226601
[10] Ghosh A, Ghosh H and Sen S 2019 Intermetallics 107 126
[11] Schlottmann P 2011 Phys. Rev. B 83 115133
[12] Li Q,Wang B, Tang N, Li C, Yi E, Shen B, Guo D, Zhong D andWang H 2023 Chin. Phys. Lett. 40 067101
[13] Dobrovits S, Kim B, Reticcioli M, Toschi A, Khmelevskyi S and Franchini C 2019 J. Phys. Condens. Matter 31 244002
[14] Lee T E 2013 Phys. Rev. Lett. 110 257204
[15] Zhong Y, Chen Z, Chen S, Xu K, Hashimoto M, He Y, Uchida S, Lu D, Mo S and Shen Z 2022 Proc. Natl. Acad. Sci. USA 119 e2204630119
[16] Beaulieu S, Dong S, Tancogne-Dejean N, Dendzik M, Pincelli T, Maklar J, Xian R P, Sentef M A, Wolf M, Rubio A, Rettig L and Ernstorfer R 2021 Sci. Adv. 7 enbd9275
[17] Shimizu M, Takemori N, Guterding D and Jeschke H O 2018 Phys. Rev. Lett. 121 137001
[18] Tian H, Tu T, Jin X, Li C, Lin T, Dong Q, Jing X, Liu B, Liu R, Li D, Liu Z, Li Q, Peng H and Liu B 2024 J. Am. Chem. Soc. 146 7324
[19] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[20] Wang Y, YaoW, Xin Z, Han T,Wang Z, Chen L, Cai C, Li Y and Zhang Y 2020 Nat. Commun. 11 4215
[21] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[22] Deng Y, Lai Y, Zhao X, Wang X, Zhu C, Huang K, Zhu C, Zhou J, Zeng Q, Duan R, Fu Q, Kang L, Liu Y, Pennycook S J, Wang X and Liu Z 2020 J. Am. Chem. Soc. 142 2948
[23] Kvashnin Y, VanGennep D, Mito M, Medvedev S A, Thiyagarajan R, Karis O, Vasiliev A N, Eriksson O and Abdel-Hafiez M 2020 Phys. Rev. Lett. 125 186401
[24] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tutiš E 2008 Nat. Mater. 7 960
[25] Zhou M, Gu Y, Ni S, Ruan B, Liu Q, Yang Q, Chen L, Yi J, Shi Y, Chen G and Ren Z 2023 Phys. Rev. B 108 224518
[26] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[27] Achari A, Bekaert J, Sreepal V, et al. 2022 Nano Lett. 22 6268
[28] Grasset R, Cea T, Gallais Y, Cazayous M, Sacuto A, Cario L, Benfatto L and Méasson M A 2018 Phys. Rev. B 97 094502
[29] Lin D, Li S, Wen J, Berger H, Forró L, Zhou H, Jia S, Taniguchi T, Watanabe K, Xi X and Bahramy M S 2020 Nat. Commun. 11 2406
[30] Leroux M, Le Tacon M, Calandra M, Cario L, Méasson M A, Diener P, Borrissenko E, Bosak A and Rodière P 2012 Phys. Rev. B 86 155125
[31] Guillamón I, Suderow H, Vieira S, Cario L, Diener P and Rodière P 2008 Phys. Rev. Lett. 101 166407
[32] Ge W, Kawahara K, Tsuji M and Ago H 2013 Nanoscale 5 5773
[33] Tian C, Gao Y, Tian F,Wang X, Zhang Z, Duan D, Huang X and Cui T 2022 Phys. Rev. B 105 L180506
[34] Tian C, Gao Y, Huang X, Fang Y, Huang F and Cui T 2023 Inorg. Chem. 62 11626
[35] Yu F,Wen X, Gui Z,Wu T,Wang Z, Xiang Z, Ying J and Chen X 2022 Chin. Phys. B 31 017405
[36] Li Q, Zhang Y, Xiang Z, Zhang Y, Zhu X and Wen H 2024 Chin. Phys. Lett. 41 017401
[37] Tissen V G, Osorio M R, Brison J P, Nemes N M, García-Hernández M, Cario L, Rodière P, Vieira S and Suderow H 2013 Phys. Rev. B 87 134502
[38] El Youbi Z, Jung S W, Richter C, Hricovini K, Cacho C and Watson M D 2021 Phys. Rev. B 103 155105
[39] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[40] Akahama Y and Kawamura H 2010 J. Phys. Conf. Ser. 215 012195
[41] Prescher C and Prakapenka V B 2015 High Pressure Res. 35 223
[42] Toby B H and Von Dreele R B 2013 J. Appl. Cryst. 46 544
[43] Blöchl P E 1994 Phys. Rev. B 50 17953
[44] Dong Q, Pan J, Li S, Fang Y, Lin T, Liu S, Liu B, Li Q, Huang F and Liu B 2022 Adv. Mater. 34 2103168
[45] Dong Q, Pan J, Li S, Li C, Lin T, Liu B, Liu R, Li Q, Huang F and Liu B 2023 J. Am. Chem. Soc. 145 14581
[46] Zhong W, Zhang H, Karaca E, Zhou J, Kawaguchi S, Kadobayashi H, Yu X, Errandonea D, Yue B and Hong F 2024 Phys. Rev. Lett. 133 066001
[47] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295
[48] Clogston A M 1962 Phys. Rev. Lett. 9 266
[49] Tian C, Huang X, Gao Y, Tian F, Liang M, Fang Y, Huang F and Cui T 2023 Phys. Rev. B 108 L180507
[50] Lv X, Song H, Chen K, Liu S, Huang Y, Fang Y, Shen Z and Cui T 2024 Sci. Chin. Phys. Mech. Astron. 67 128211
[51] Birch F 1947 Phys. Rev. 71 809
[52] Ehm L, Knorr K and Depmeier W 2007 J. Alloys Compd. 429 82
[53] Deng S, Simon A and Köhler J 2000 Solid State Sci. 2 31
[1] Regulation of superconductivity in Nb thin films induced by interstitial oxygen atoms
Yuchuan Liu(刘钰川), Ming Yang(杨明), Yun Fan(范云), Zulei Xu(徐祖磊), Yu Wu(吴禹), Yixin Liu(刘以鑫), Wei Peng(彭炜), Gang Mu(牟刚), and Zhi-Rong Lin(林志荣). Chin. Phys. B, 2025, 34(4): 047401.
[2] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[3] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田) and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[4] Superconductivity in titanium probed by AC magnetic susceptibility to 120 Gpa
Jing Song(宋静), Hongyu Liu(刘红玉), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(4): 047403.
[5] Pressure-promoted ligand to metal energy transfer for emission enhancement of [Tb2(BDC)3(DMF)2(H2O)2]n metal-organic framework
Yunfeng Yang(杨云峰), Kaiyan Yuan(袁开岩), Binhao Yang(杨斌豪), Qing Yang(杨青), Yixuan Wang(王艺璇), and Xinyi Yang(杨新一)§. Chin. Phys. B, 2025, 34(3): 036101.
[6] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[7] First-principles insights into the high-pressure stability and electronic characteristics of molybdenum nitride
Tao Wang(王涛), Ming-Hong Wen(温铭洪), Xin-Xin Zhang(张新欣), Wei-Hua Wang(王伟华), Jia-Mei Liu(刘佳美), Xu-Ying Wang(王旭颖), and Pei-Fang Li(李培芳). Chin. Phys. B, 2025, 34(3): 036104.
[8] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
[9] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[10] Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure
Haoqi Chen(陈浩琦), Haowen Jiang(姜皓文), Xuehui Jiang(姜雪辉), Jialin Wang(王佳琳), Chengyao Zhang(张铖瑶), Defang Duan(段德芳), Jing Dong(董晶), and Yanbin Ma(马艳斌). Chin. Phys. B, 2025, 34(2): 026201.
[11] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[12] Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe
Tengdong Zhang(张腾东), Rui Fan(樊睿), Yan Gao(高炎), Yanling Wu(吴艳玲), Xiaodan Xu(徐晓丹), Dao-Xin Yao(姚道新), and Jun Li(李军). Chin. Phys. B, 2025, 34(2): 027403.
[13] Intermediately coupled type-II superconductivity in a La-based kagome metal La3Al
Yingpeng Yu(于英鹏), Zhaolong Liu(刘兆龙), Zhaoxu Chen(陈昭旭), Qi Li(李琦), Yulong Wang(王玉龙), Xuhui Wang(王旭辉), Chunsheng Gong(龚春生), Zhaotong Zhuang(庄照通), Bin-Bin Ruan(阮彬彬), Huifen Ren(任会芬), Peijie Sun(孙培杰), Jian-Gang Guo(郭建刚), and Shifeng Jin(金士锋). Chin. Phys. B, 2025, 34(1): 017401.
[14] Pressure generation under deformation in a large-volume press
Saisai Wang(王赛赛), Xinyu Zhao(赵鑫宇), Kuo Hu(胡阔), Bingtao Feng(丰丙涛), Xuyuan Hou(侯旭远), Yiming Zhang(张羿鸣), Shucheng Liu(刘书成), Yuchen Shang(尚宇琛), Zhaodong Liu(刘兆东), Mingguang Yao(姚明光), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2024, 33(9): 098104.
[15] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
No Suggested Reading articles found!