Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 020306    DOI: 10.1088/1674-1056/ad9a9d
GENERAL Prev   Next  

Entanglement and energy transportation in central-spin quantum battery

Fan Liu(刘帆)1, Hui-Yu Yang(杨慧宇)1, Shuai-Li Wang(王帅立)1, Jun-Zhong Wang(王俊钟)1, Kun Zhang(张堃)1,2,3,†, and Xiao-Hui Wang(王晓辉)1,2,3,‡
1 School of Physics, Northwest University, Xi'an 710127, China;
2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China;
3 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China
Abstract  Quantum battery exploits the principle of quantum mechanics to transport and store energy. We study the energy transportation of the central-spin quantum battery, which is composed of $N_{\rm b}$ spins serving as the battery cells, and surrounded by $N_{\rm c}$ spins serving as the charger cells. We apply the invariant subspace method to solve the dynamics of the central-spin battery with a large number of spins. We establish a universal inverse relationship between the battery capacity and the battery-charger entanglement, which persists in any size of the battery and charger cells. Moreover, we find that when $N_{\rm b}=N_{\rm c}$, the central-spin battery has the optimal energy transportation, corresponding to the minimal battery-charger entanglement. Surprisingly, the central-spin battery has a uniform energy transportation behaviors in certain battery-charger scales. Our results reveal a nonmonotonic relationship between the battery-charger size and the energy transportation efficiency, which may provide more insights on designing other types of quantum batteries.
Keywords:  central-spin quantum battery      energy transportation      entanglement  
Received:  01 November 2024      Revised:  02 December 2024      Accepted manuscript online:  05 December 2024
PACS:  03.65.-w (Quantum mechanics)  
  05.70.-a (Thermodynamics)  
  03.67.Bg (Entanglement production and manipulation)  
Fund: Project supported by the National Natural Science Foundation (Grant Nos. 12275215, 12305028, and 12247103), the Major Basic Research Program of the Natural Science of Shaanxi Province, China (Grant No. 2021JCW-19), Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSZ005), and the Youth Innovation Team of Shaanxi Universities.
Corresponding Authors:  Kun Zhang, Xiao-Hui Wang     E-mail:  kunzhang@nwu.edu.cn;xhwang@nwu.edu.cn

Cite this article: 

Fan Liu(刘帆), Hui-Yu Yang(杨慧宇), Shuai-Li Wang(王帅立), Jun-Zhong Wang(王俊钟), Kun Zhang(张堃), and Xiao-Hui Wang(王晓辉) Entanglement and energy transportation in central-spin quantum battery 2025 Chin. Phys. B 34 020306

[1] Nielsen M A and Chuang I 2000 Quantum computation and quantum information (Cambridge University Press)
[2] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin G A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[3] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[4] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J L 2010 Nature 465 45
[5] Reiher M, Wiebe N, Svore K M, Wecker D and Troyer M 2017 Proc. Natl. Acad. Sci. USA 114 7555
[6] Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis and Neven H 2018 Nat. Phys. 14 595
[7] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[8] Koepsell J, Bourgund D, Sompet P, Hirthe S, Bohrdt A,Wang Y, Grusdt F, Demler E, Salomon G, Gross C and Bloch 2021 Science 374 82
[9] Muniz J A, Barberena D, Lewis-Swan R J, Young D J, Cline J R K, Rey A M and Thompson J K 2020 Nature 580 602
[10] Blatt R and Roos C F 2020 Nat. Phys. 8 277
[11] Tamura M, Mukaiyama T and Toyoda K 2020 Phys. Rev. Lett. 124 200501
[12] Niu J J, Yan T X, Zhou Y X, Tao Z Y, Li X L, Liu W Y, Zhang L B, Jia H, Liu S, Yan Z B, Chen Y Z and Yu D 2021 Sci. Bull. 66 1168
[13] Guo Q J, Cheng C, Sun Z H, Song Z X, Li H K, Wang Z, Ren W H, Dong H, Zheng D N, Zhang Y R, Mondaini R, Fan H andWang H 2021 Nat. Phys. 17 234
[14] Campisi M, Hanggi P and Talkner P 2011 Rev. Mod. Phys. 83 1653
[15] Yang X, Yang Y H, Alimuddin M, Salvia R, Fei S M, Zhao L M, Nimmrichter S and Luo M X 2023 Phys. Rev. Lett. 131 030402
[16] Shi Y H, Shi H L, Wang X H, Hu M L, Liu S Y, Yang W L and Fan H 2020 J. Phys. A: Math. Theor. 53 085301
[17] Ji W, Chai Z, Wang M, Guo Y, Rong X, Shi F, Ren C L, Wang Y and Du J F 2022 Phys. Rev. Lett. 128 090602
[18] Dou F Q, Lu Y Q,Wang Y J and Sun J A 2022 Phys. Rev. B 105 115405
[19] Dou F Q, Zhou H and Sun J A 2022 Phys. Rev. A 106 032212
[20] Wang Z, Li H, Feng W, Song X, Song C, Liu W, Guo Q, Zhang X, Dong H, Zheng D, Wang H and Wang D W 2022 Phys. Rev. Lett. 124 013601
[21] Lu W, Chen J, Kuang L M and Wang X 2021 Phys. Rev. A 104 043706
[22] Uzdin R, Levy A and Kosloff R 2015 Phys. Rev. X 5 031044
[23] Brandão F G S L, Horodecki M, Oppenheim J, Renes J M and Spekkens R W 2013 Phys. Rev. Lett. 111 250404
[24] Alvarado Barrios G, Albarrán-Arriagada F, Cárdenas-López F A, Romero G and Retamal J C 2017 Phys. Rev. A 996 052119
[25] Altintas F, Hardal A Ü C and Müstecaplioǧlu Ö E 2014 Phys. Rev. E 90 032102
[26] Park J J, Kim K H, Sagawa T and Kim S W 2017 Phys. Rev. Lett. 111 230402
[27] Seah S, Perarnau-Llobet M, Haack G, Brunner N and Nimmrichter S 2017 Phys. Rev. Lett. 127 100601
[28] Manzano G, Plastina F and Zambrini R 2017 Phys. Rev. Lett. 121 120602
[29] Goold J, Huber M, Riera A, del Rio L and Skrzypczyk P 2016 J. Phys. A: Math. Theor. 49 143001
[30] Strasberg P, Schaller G, Brandes T and Esposito M 2017 Phys. Rev. X 7 021003
[31] Watanabe G, Venkatesh B P, Talkner P and del Campo A 2017 Phys. Rev. Lett. 118, 050601
[32] Zhang Y Y, Yang T R, Fu L and Wang X 2019 Phys. Rev. E 99 052106
[33] Alicki R and Fannes M 2013 Phys. Rev. E 87 042123
[34] Quach J Q, McGhee K E, Ganzer L, Rouse D M, Lovett B W, Gauger E M, Keeling J, Cerullo G, Lidzey D G and Virgili T 2022 Sci. Adv. 8 eabk3160
[35] Ferraro D, Campisi M, Andolina G M, Pellegrini V and Polini M 2018 Phys. Rev. Lett. 120 117702
[36] Fusco L, Paternostro M and Chiara G D 2016 Phys. Rev. E 94 052122
[37] Binder F C, Vinjanampathy S, Modi K and Goold J 2015 New J. Phys. 17 075015
[38] Andolina G M, Farina D, Mari A, Pellegrini V, Giovannetti V and Polini M 2018 Phys. Rev. B 98 205423
[39] Santos A C 2021 Phys. Rev. E 103 042118
[40] Rossini D, Andolina G M, Rosa D, Carrega Mand PoliniM2020 Phys. Rev. Lett. 125 236402
[41] YuWL, Zhang Y, Li H,Wei G F, Han L P, Tian F and Zou J 2023 Chin. Phys. B 32 010302
[42] Yang Z Q, Zhou L K, Zhou Z Y, Jin G R, Cheng L andWang X G 2023 Chin. Phys. B 32 110301
[43] Yao Y and Shao X Q 2021 Phys. Rev. E 104 044116
[44] Andolina G M, Keck M, Mari A, Campisi M, Giovannetti V and Polini M 2019 Phys. Rev. Lett. 122 047702
[45] Zhang X and Blaauboer M 2023 Front. Phys. 10 1097564
[46] Li J and Shen S Q 2007 Phys. Rev. B 76 153302
[47] Bortz M and Stolze J 2007 Phys. Rev. B 76 014304
[48] Gaudin M 1976 J. Phys. 37 10
[49] Dominguez F, Esebbag C and Dukelsky J 2006 J. Phys. A 39 11349
[50] Faribault A, Koussir H and Mohamed M H 2019 Phys. Rev. B 100 205420
[51] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J and Hollenberg L C L 2013 Phys. Rep. 528 1
[52] Fan J Y and Pang S S 2023 Phys. Rev. A 107 022209
[53] Li Z, Yang P, You W L and Wu N 2023 Phys. Rev. A 102 032409
[54] Schliemann J, Khaetskii A V and Loss D 2002 Phys. Rev. B 66 245304
[55] Alexander V Khaetskii, Loss D and Glazman L 2002 Phys. Rev. Lett. 88 186802
[56] Deng C and Hu X 2006 Phys. Rev. B 73 241303
[57] Peng L, He W B, Chesi S, Lin H Q and Guan X W 2021 Phys. Rev. A 103 052220
[58] Liu J X, Shi H L, Shi Y H, Wang X H and Yang W L 2021 Phys. Rev. B 104 245418
[59] Kamin F H, Tabesh F T, Salimi S and Santos A C 2020 Phys. Rev. E 102 052109
[60] Hovhannisyan K V, Perarnau-Llobet M, Huber M and Acin A 2013 Phys. Rev. Lett. 111 240401
[61] Shi H L, Ding S, Wan Q K, Wang X H and Yang W L 2022 Phys. Rev. Lett. 129 130602
[62] Dicke R H 1954 Phys. Rev. 93 99
[63] Villazon T, Chandran A and Claeys P W 2020 Phys. Rev. R 2 032052
[64] Tang L H, Long D M, Polkovnikov A, Chandran A and Claeys P W 2023 Scipost Phys. 15 030
[65] Le T, Levinsen J, Modi K, Parish M M and Pollock F A 2018 Phys. Rev. A 97 022106
[1] Quantum-state engineering using enhanced tripartite interactions in atom-photon-phonon hybrid systems
Yaowu Guo(郭耀武), Jiaqiang Zhao(赵加强), Lianzhen Cao(曹连振), Yingde Li(李英德), and Hong-Yan Lu(路红艳). Chin. Phys. B, 2025, 34(2): 024203.
[2] Enhancing entanglement and steering in a hybrid atom-optomechanical system via Duffing nonlinearity
Ling-Hui Dong(董凌晖), Xiao-Jie Wu(武晓捷), Cheng-Hua Bai(白成华), and Shao-Xiong Wu(武少雄). Chin. Phys. B, 2025, 34(2): 020304.
[3] Multi-hop quantum teleportation based on HSES via GHZ-like states
She-Xiang Jiang(蒋社想), Xiao-Long Wei(韦晓龙), Jin-Huan Li(李金欢), and Shuai-Shuai Li(李帅帅). Chin. Phys. B, 2025, 34(1): 010302.
[4] Established conversions for hybrid entangled states assisted by error-predicted parity-discriminated devices
Fang-Fang Du(杜芳芳), Zhi-Guo Fan(范志国), Xue-Mei Ren(任雪梅), Ming Ma(马明), and Wen-Yao Liu(刘文耀). Chin. Phys. B, 2025, 34(1): 010303.
[5] Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers
Jian-Zhuang Wu(武建壮), Ying Xi(奚滢), Bo-Ya Li(李博雅), Lian-E Lu(芦连娥), and Yong-Hong Ma(马永红). Chin. Phys. B, 2024, 33(9): 090308.
[6] Delayed-measurement one-way quantum computing on cloud quantum computer
Zhi-Peng Yang(杨智鹏), Yu-Ran Zhang(张煜然), Fu-Li Li(李福利), and Heng Fan(范桁). Chin. Phys. B, 2024, 33(9): 090304.
[7] Entangling two levitated charged nanospheres through Coulomb interaction
Guoyao Li(李国耀) and Zhangqi Yin(尹璋琦). Chin. Phys. B, 2024, 33(7): 074205.
[8] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[9] A quantum blind signature scheme based on dense coding for non-entangled states
Ke Xing(邢柯), Ai-Han Yin(殷爱菡), and Yong-Qi Xue(薛勇奇). Chin. Phys. B, 2024, 33(6): 060309.
[10] Nonlinearly induced entanglement in dissipatively coupled optomechanical system
Wen-Quan Yang(杨文全), Xuan Leng(冷轩), Jiong Cheng(程泂), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2024, 33(6): 060313.
[11] Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis
Y. Lahlou, B. Maroufi, and M. Daoud. Chin. Phys. B, 2024, 33(5): 050303.
[12] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[13] One-step quantum dialogue
Peng-Hui Zhu(朱鹏辉), Wei Zhong(钟伟), Ming-Ming Du(杜明明), Xi-Yun Li(李喜云), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2024, 33(3): 030302.
[14] Quantum synchronization with correlated baths
Lei Li(李磊), Chun-Hui Wang(王春辉), Hong-Hao Yin(尹洪浩), Ru-Quan Wang(王如泉), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2024, 33(2): 020306.
[15] Genuine entanglement under squeezed generalized amplitude damping channels with memory
Mazhar Ali. Chin. Phys. B, 2024, 33(2): 020307.
No Suggested Reading articles found!