CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
|
|
|
Realization of robust Ohmic contact for semiconducting black arsenic by coupling with graphene |
Xinjuan Cheng(程新娟) and Xuechao Zhai(翟学超)† |
Department of Applied Physics, and MIIT Key Laboratory of Semiconductor Microstructures and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
Abstract Ohmic contacts are fundamental components in semiconductor technology, facilitating efficient electrical connection and excellent device performance. We employ first-principles calculations to show that semimetallic graphene is a natural Ohmic contact partner of monolayer semiconducting black arsenic (BAs), for which the top of the valence band is below the Fermi energy of the order of 10$^2$ meV. The Ohmic contact arises from the giant Stark effect induced by van der Waals electron transfer from BAs to graphene, which does not destroy their respective band features. Remarkably, we show that this intrinsic Ohmic contact remains robust across a wide range of interlayer distances (adjustable by strain) or vertical electric fields, whereas the weak spin splitting of the order of 1 meV induced by symmetry breaking plays little part in Ohmic contact. These findings reveal the potential applications of graphene-BAs in ultralow dissipation transistors.
|
Received: 31 October 2024
Revised: 06 December 2024
Accepted manuscript online: 18 December 2024
|
PACS:
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
61.82.Fk
|
(Semiconductors)
|
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62374088 and 12074193). |
Corresponding Authors:
Xuechao Zhai
E-mail: zhaixuechao@njust.edu.cn
|
Cite this article:
Xinjuan Cheng(程新娟) and Xuechao Zhai(翟学超)† Realization of robust Ohmic contact for semiconducting black arsenic by coupling with graphene 2025 Chin. Phys. B 34 027402
|
[1] Burghartz J N 2013 Guide to State-of-the-Art Electron Devices (Chichester: John Wiley & Sons Inc) [2] Allain A, Kang J, Banerjee K and Kis A 2015 Nat. Mater. 14 1195 [3] Schulman D S, Arnold A J and Das S 2018 Chem. Soc. Rev. 47 3037 [4] Ni J, Fu Q, Ostrikov K, Gu X, Nan H and Xiao S 2022 Nanotechnology 33 062005 [5] Peng B, Cao K, Lan A H Y, Chen M, Lu Y and Chan P K L 2020 Adv. Mater. 32 2002281 [6] Gambino J P and Colgan E G 1998 Mater. Chem. Phys. 52 99 [7] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696 [8] Wang Y, Kim J C, Wu R J, Martinez J, Song X, Yang J, Zhao F, Mkhoyan A, Jeong H Y and Chhowalla M 2019 Nature 568 70 [9] Xu S Y, Yu M, Yuan D, Peng B, Yuan L, Zhang Y M and Jia R X 2024 Chin. Phys. B 33 017302 [10] Guo J, Zhu J, Liu S, Liu J, Xu J, Chen W, Zhou Y, Zhao X, Mi M and Yang M 2023 Chin. Phys. B 32 037303 [11] Xiong Y, Xu D, Feng Y, Zhang G, Lin P and Chen X 2023 Adv. Mater. 35 2206939 [12] Mohanta M K and Sarkar A D 2021 Appl. Surf. Sci. 540 148389 [13] Shen P C, Su C, Lin Y, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z, Mao N, Wang J, Tung V, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J and Kong J 2021 Nature 593 211 [14] Xia F, Wang H, Hwang J C M, Castro Neto A H and Yang L 2019 Nat. Rev. Phys. 1 306 [15] Du G, Ke F, Han W, Chen W B, Xia Q, Kang J and Chen Y 2023 J. Phys. Chem. Lett. 14 8676 [16] Zhong M, Xia Q, Pan L, Liu Y, Chen Y, Deng H X, Li J and Wei Z 2018 Adv. Funct. Mater. 28 1802581 [17] Sheng F, Hua C, Cheng M, Hu J, Sun X, Tao Q, Lu H, Lu Y, Zhong M, Watanabe K, Taniguchi T, Xia Q, Xu Z A and Zheng Y 2021 Nature 593 56 [18] Kamal C and Ezawa M 2015 Phys. Rev. B 91 085423 [19] Gao C, Li R, Zhong M, Wang R, Wang M, Lin C, Huabf L, Cheng Y and Huang W 2020 J. Phys. Chem. Lett. 11 93 [20] Chen Y, Chen C, Kealhofer R, Liu H, Yuan Z, Jiang L, Suh J, Park J, Ko C, Choe H S, Avila J, Zhong M, Wei Z, Li J, Li S, Gao H, Liu Y, Analytis J, Xia Q, Asensio M and Wu J 2018 Adv. Mater. 30 1800754 [21] Zhang J, Chen S, Du G, Yu Y, Han W, Xia Q, Jin K and Chen Y 2023 Nano Lett. 23 8970 [22] Wang H, Zhong Y, Jiang W, Latini S, Xia S, Cui T, Li Z, Low T and Liu F 2024 Nano Lett. 24 2057 [23] Zhong M, Meng H, Liu S, Yang H, Shen W, Hu C, Yang J, Ren Z, Li B, Liu Y, He J, Xia Q, Li J and Wei Z 2021 ACS Nano 15 1701 [24] Geim A K and Grigorieva I V 2013 Nature 499 419 [25] Liu Y, Stradins P and Wei S H 2016 Sci. Adv. 2 e1600069 [26] Farmanbar M and Brocks G 2016 Adv. Electron. Mater. 2 1500405 [27] Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192 [28] Saeed M, Palacios P, Wei M D, Baskent E, Fan C Y, Uzlu B, Wang K T, Hemmetter A, Wang Z, Neumaier D, Lemme M C and Negra R 2022 Adv. Mater. 34 2108437 [29] Hieu N N, Phuc H V, Ilyasov V V, Chien N D, Poklonski N A, Van Hieu N and Nguyen C V 2017 J. Appl. Phys. 122 104301 [30] Liu Y, Rodrigues J N B, Luo Y Z, Li L, Carvalho A, Yang M, Laksono E, Lu J, Bao Y, Xu H, Tan S J R, Qiu Z, Sow C H, Feng Y P, Castro Neto A H, Adam S, Lu J and Loh K P 2018 Nat. Nanotechnol. 13 828 [31] Padilha J E, Fazzio A and da Silva A J R 2015 Phys. Rev. Lett. 114 066803 [32] Sun M L, Chou J P, Yu J and Tang W 2017 Phys. Chem. Chem. Phys. 19 17324 [33] Yuan J, Wang F, Zhang Z, Song B, Yan S, Shang M H, Tong C and Zhou J 2023 Phys. Rev. B 108 125404 [34] Binh N T T, Nguyen C Q, Vu T V and Nguyen C V 2021 J. Phys. Chem. Lett. 12 3934 [35] Nguyen H T T, Obeid M M, Bafekry A, Idrees M, Vu T V, Phuc H V, Hieu N N, Hoa L T, Amin B and Nguyen C V 2020 Phys. Rev. B 102 075414 [36] Cao L, Ang L Y S, Wu Q and Ang L K 2019 Appl. Phys. Lett. 115 241601 [37] Liu Y, Qiu Z, Carvalho A, Bao Y, Xu H, Tan S J R, Liu W, Castro Neto A H, Loh K P and Lu J 2017 Nano Lett. 17 1970 [38] Yang X, Sa B, Lin P, Xu C, Zhu Q, Zhan H and Sun Z 2020 J. Phys. Chem. C 124 23699 [39] Mohanta M K, Arora A and De Sarkar A 2021 Phys. Rev. B 104 165421 [40] Guo H, Lang X, Tian X, Jiang W and Wang G 2022 Nanotechnology 33 425704 [41] Ebrahimi M R, Vazifehshenas T 2023 Appl. Surf. Sci. 616 156489 [42] Feng X, Lan C S, Liang S J, Lee C H, Yang S A and Ang Y S 2024 Adv. Func. Mater. 34 2309848 [43] Cao S, Li Z, Han J and Zhang Z 2024 Surf. Interfaces 46 104022 [44] Gao Z, He X, Li W, He Y and Xiong K 2024 Physica E 155 115837 [45] Liu X, Yang J, Deng X, Tang Z K and Cao L 2024 ACS Appl. Electron. Mater. 6 2568 [46] Chen Z, Qiu H, Cheng X, Cui J, Jin Z, Tian D, Zhang X, Xu K, Liu R, Niu W, Qiu L, Chen Y, Zhang C, Xi X, Song F, Yu R, Zhai X, Jin B, Zhang R and Wang X 2024 Nat. Commun. 15 2605 [47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [48] Klimes J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131 [49] Bengtsson L 1999 Phys. Rev. B 59 12301 [50] Van Troeye B, Lherbier A, Charlier J C and Gonze X 2018 Phys. Rev. Mater. 2 074001 [51] Tung R T 2014 Appl. Phys. Rev. 1 011304 [52] Bardeen J 1947 Phys. Rev. 71 717 [53] Sanville E, Kenny S D, Smith R and Henkelman G 2007 J. Comput. Chem. 28 899 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|