Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 088902    DOI: 10.1088/1674-1056/ad50c3
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of network structure on spreading dynamics via tie range

Min Li(李敏)1, Yurong Song(宋玉蓉)1, Bo Song(宋波)2, Ruqi Li(李汝琦)3, Guo-Ping Jiang(蒋国平)1,†, and Zhang Hui(张晖)1,4
1 College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
4 Full Truck Alliance Co. Ltd., Nanjing 210012, China
Abstract  There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of network structure on network spreading. Motifs, as fundamental structures within a network, play a significant role in spreading. Therefore, it is of interest to investigate the influence of the structural characteristics of basic network motifs on spreading dynamics. Considering the edges of the basic network motifs in an undirected network correspond to different tie ranges, two edge removal strategies are proposed, short ties priority removal strategy and long ties priority removal strategy. The tie range represents the second shortest path length between two connected nodes. The study focuses on analyzing how the proposed strategies impact network spreading and network structure, as well as examining the influence of network structure on network spreading. Our findings indicate that the long ties priority removal strategy is most effective in controlling network spreading, especially in terms of spread range and spread velocity. In terms of network structure, the clustering coefficient and the diameter of network also have an effect on the network spreading, and the triangular structure as an important motif structure effectively inhibits the spreading.
Keywords:  network spreading      network motifs      tie range      edge removal strategy  
Received:  16 April 2024      Revised:  24 May 2024      Accepted manuscript online: 
PACS:  89.75.Fb (Structures and organization in complex systems)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62373197 and 62203229) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX24_1211).
Corresponding Authors:  Guo-Ping Jiang     E-mail:  jianggp@njupt.edu.cn

Cite this article: 

Min Li(李敏), Yurong Song(宋玉蓉), Bo Song(宋波), Ruqi Li(李汝琦), Guo-Ping Jiang(蒋国平), and Zhang Hui(张晖) Influence of network structure on spreading dynamics via tie range 2024 Chin. Phys. B 33 088902

[1] Tudisco F and Higham D J 2021 Commun. Phys. 4 201
[2] Molaei S, Farahbakhsh R, Salehi M and Crespi N 2020 Expert Syst. Appl. 160 113580
[3] Ouyang B, Xia Y X, Wang C, et al. 2018 IEEE Trans. Circuits Syst. II Express Briefs 65 1244-1248
[4] Ma Z W, Sun L, Ding Z G, Huang Y Z and Hu Z L 2024 Chinese Phys. B 33 028902
[5] Milo R, Shen-Orr S, Itzkovitz S, et al. 2002 Science 298 824-827
[6] Bianconi G and Capocci A 2003 Phys. Rev. Lett. 90 078701
[7] Kim H J and Kim J M 2005 Phys. Rev. E 72 036109
[8] Jiang S Y, Zhou J, Small M, et al. 2023 Phys. Rev. Lett. 130 187402
[9] Battiston F, Cencetti G, Iacopini I, et al. 2020 Phys. Rep. 874 1-92
[10] Shi D H, Chen Z F, Sun X, et al. 2021 Commun. Phys. 4 249
[11] Zhang L F, Su C, Jin Y F, et al. 2018 Inform. Sciences 451-452 240-252
[12] Pan L M, Wang W, Tian L X and Lai Y C 2021 Phys. Rev. E 103 012302
[13] Zhong Z J, Yang Y K, Miao R Q, Peng Y Q and Liu G Y 2022 Chin. Phys. B 31 040205
[14] Zheng J B, Gao M, Lim E P, et al. 2022 Knowl. Inf. Syst. 64 1967
[15] Zheng K X, Liu Y, Gong J and Wang W 2022 Chaos, Solitons and Fractals 157 111934
[16] Chandrasekhar K, Kadelka C, Laubenbacher R and Murrugarra D 2023 Physica D 451 133775
[17] Meena C, Hens C, Acharyya S, et al. 2023 Nat. Phys. 19 1033
[18] Kang X J, Li X C, Yao H, et al. 2022 Inform. Sciences 616 37
[19] Harling G and Onnela J P 2018 Netw. Sci. 6 34
[20] Nian F Z and Liu J S 2021 Chaos, Solitons and Fractals 149 111065
[21] Liu Y, Zeng Q, Pan L M and Tang M 2023 IEEE Trans. Netw. Sci. Eng. 10 2201-2211
[22] Watts D J and Strogatz S H 1998 Nature 393 440
[23] Barabási A L and Albert R 1999 Science 286 509
[24] Newman M E J 2003 Siam Rev. 45 167
[25] Boccaletti S, Latora V, Moreno Y, et al. 2006 Phys. Rep. 424 175
[26] Girvan M and Newman M E J 2002 Proc. Natl. Acad. Sci. USA 99 7821
[27] Nematzadeh A, Ferrara E, Flammini A and Ahn Y Y 2014 Phys. Rev. Lett. 113 259901
[28] Kates-Harbeck J and Desai M M 2023 Phys. Rev. E 108 024306
[29] Mao K 2015 Comput. Sci. 42 85
[30] Bao X G, Hu Q T, Ji P, et al. 2022 Nat. Commun. 13 5301
[31] Shen-Orr S, Milo R, Mangan S and Alon U 2002 Nat. Genet. 31 64
[32] Menck P J, Heitzig J, Marwan N and Kurths J 2013 Nat. Phys. 9 89
[33] Park P S, Blumenstock J and Macy M 2018 Science 362 1410-1413
[34] Lyu D, Yuan Y, Wang L, Wang X F and Pentland A 2022 Commun. Phys. 5 87
[35] Song J H 2023 Chin. Phys. B 32 098901
[36] Li C, van de Bovenkamp R and Van Mieghem P 2012 Phys. Rev. E 86 026116
[37] Xie Y K and Wang Z 2021 Math. Comput. Simulat. 188 23-34
[38] Chakrabarti D, Wang Y, Wang C X, et al. 2008 ACM Trans. Inf. Syst. Secur. 10 1-26
[39] Gómez S, Díza-Guilera A, Gómez-Gardeñes J, et al. 2013 Phys. Rev. Lett. 110 028701
[40] Mao G Y and Zhang N 2017 Physica A 466 243-248
[41] Pan Z F, Wang X F and Li X 2006 J. Simul. 18 2346-2348
[42] Mo Y Q, Dasgupta S and Jacob B 2023 IEEE T. Automat. Contr. 68 454-461
[1] CRB: A new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization
Chen Dong(董晨), Gui-Qiong Xu(徐桂琼), and Lei Meng(孟蕾). Chin. Phys. B, 2024, 33(8): 088901.
[2] Disorder-to-order transition induced by spontaneous cooling regulation in robotic active matter
Shuaixu Hou(侯帅旭), Gao Wang(王高), Xingyu Ma(马星宇), Chuyun Wang(汪楚云), Peng Wang(王鹏), Huaicheng Chen(陈怀城), Liyu Liu(刘雳宇), and Jing Wang(王璟). Chin. Phys. B, 2024, 33(7): 078701.
[3] WT-FCTGN: A wavelet-enhanced fully connected time-gated neural network for complex noisy traffic flow modeling
Zhifang Liao(廖志芳), Ke Sun(孙轲), Wenlong Liu(刘文龙), Zhiwu Yu(余志武), Chengguang Liu(刘承光), and Yucheng Song(宋禹成). Chin. Phys. B, 2024, 33(7): 078901.
[4] K-core attack, equilibrium K-core, and kinetically constrained spin system
Hai-Jun Zhou(周海军). Chin. Phys. B, 2024, 33(6): 066402.
[5] Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method
Dongli Duan(段东立), Feifei Bi(毕菲菲), Sifan Li(李思凡), Chengxing Wu(吴成星), Changchun Lv(吕长春), and Zhiqiang Cai(蔡志强). Chin. Phys. B, 2024, 33(5): 050201.
[6] Identifying influential spreaders in complex networks based on density entropy and community structure
Zhan Su(苏湛), Lei Chen(陈磊), Jun Ai(艾均), Yu-Yu Zheng(郑雨语), and Na Bie(别娜). Chin. Phys. B, 2024, 33(5): 058901.
[7] Influencer identification of dynamical networks based on an information entropy dimension reduction method
Dong-Li Duan(段东立), Si-Yuan Ji(纪思源), and Zi-Wei Yuan(袁紫薇). Chin. Phys. B, 2024, 33(4): 040502.
[8] Chimera states of phase oscillator populations with nonlocal higher-order couplings
Yonggang Wu(伍勇刚), Huajian Yu(余华健), Zhigang Zheng(郑志刚), and Can Xu(徐灿). Chin. Phys. B, 2024, 33(4): 040504.
[9] Adaptive interaction driven by the learning effect in the spatial prisoner's dilemma
Jiaqi Li(李佳奇), Jianlei Zhang(张建磊), and Qun Liu(刘群). Chin. Phys. B, 2024, 33(3): 030202.
[10] Source localization in signed networks with effective distance
Zhi-Wei Ma(马志伟), Lei Sun(孙蕾), Zhi-Guo Ding(丁智国), Yi-Zhen Huang(黄宜真), and Zhao-Long Hu(胡兆龙). Chin. Phys. B, 2024, 33(2): 028902.
[11] SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality
Da Ai(艾达), Xin-Long Liu(刘鑫龙), Wen-Zhe Kang(康文哲), Lin-Na Li(李琳娜), Shao-Qing Lü(吕少卿), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(11): 118902.
[12] Assessing edge-coupled interdependent network disintegration via rank aggregation and elite enumeration
Yong-Hui Li(李咏徽), San-Yang Liu(刘三阳), and Yi-Guang Bai(白艺光). Chin. Phys. B, 2023, 32(11): 118901.
[13] Explosive synchronization of multi-layer complex networks based on star connection between layers with delay
Yan-Liang Jin(金彦亮), Qian-Yuan Han(韩钱源), Run-Zhu Guo(郭润珠), Yuan Gao(高塬), and Li-Quan Shen(沈礼权). Chin. Phys. B, 2023, 32(10): 100507.
[14] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[15] Orderly hysteresis in field-driven robot swarm active matter
Yanping Liu(刘艳萍), Gao Wang(王高), Peilong Wang(王培龙), Daming Yuan(袁大明), Shuaixu Hou(侯帅旭), Yangkai Jin(金阳凯), Jing Wang(王璟), and Liyu Liu(刘雳宇). Chin. Phys. B, 2023, 32(6): 068701.
No Suggested Reading articles found!