Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120310    DOI: 10.1088/1674-1056/ad8a4c
SPECIAL TOPIC — Quantum computing and quantum sensing Prev   Next  

Exact quantum dynamics for two-level systems with time-dependent driving

Zhi-Cheng He(贺郅程)1, Yi-Xuan Wu(吴奕璇)1, and Zheng-Yuan Xue(薛正远)1,2,3,†
1 Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, and School of Physics, South China Normal University, Guangzhou 510006, China;
2 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China;
3 Hefei National Laboratory, Hefei 230088, China
Abstract  It is well known that the time-dependent Schrrödinger equation can only be solved exactly in very rare cases, even for two-level quantum systems. Thus, finding the exact quantum dynamics under a time-dependent Hamiltonian is not only fundamentally important in quantum physics but also facilitates active quantum manipulations for quantum information processing. In this work, we present a method for generating nearly infinite analytically assisted solutions to the Schrödinger equation for a qubit under time-dependent driving. These analytically assisted solutions feature free parameters with only boundary restrictions, making them applicable in a variety of precise quantum manipulations. Due to the general form of the time-dependent Hamiltonian in our approach, it can be readily implemented in various experimental setups involving qubits. Consequently, our scheme offers new solutions to the Schrödinger equation, providing an alternative analytical framework for precise control over qubits.
Keywords:  quantum computation      quantum control      analytical solution  
Received:  01 September 2024      Revised:  19 October 2024      Accepted manuscript online:  23 October 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Hk (Quantum communication)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12275090), the Guangdong Provincial Quantum Science Strategic Initiative (Grant No. GDZX2203001), and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302303).
Corresponding Authors:  Zheng-Yuan Xue     E-mail:  zyxue83@163.com

Cite this article: 

Zhi-Cheng He(贺郅程), Yi-Xuan Wu(吴奕璇), and Zheng-Yuan Xue(薛正远) Exact quantum dynamics for two-level systems with time-dependent driving 2024 Chin. Phys. B 33 120310

[1] Landau L D 1932 Phys. Z. Sowjetunion 2 118
[2] Zener C 1932 Proceed. Royal Soc. Lond. Ser. A 137 696
[3] Rabi I I 1937 Phys. Rev. 51 652
[4] Rosen N and Zener C 1932 Phys. Rev. 40 502
[5] Li Y, He Z C, Yuan X, Zhang M, Liu C, Wu Y X, Zhu M, Qin X, Xue Z Y, Lin Y H and Du J F 2022 Phys. Rev. Appl. 18 034047
[6] Mitra A 2018 Annu. Rev. Condens. Matter Phys. 9 245
[7] Sengupta K, Powell S and Sachdev S 2004 Phys. Rev. A 69 053616
[8] Mundada P, Zhang G, Hazard T and Houck A 2019 Phys. Rev. Appl. 12 054023
[9] Zhao P, Linghu K H, Li Z Y, Xu P, Wang R X, Xue G M, Jin Y R and Yu H F 2022 PRX Quantum 3 020301
[10] Daems D, Ruschhaupt A, Sugny D and Guérin S 2013 Phys. Rev. Lett. 111 050404
[11] Li S, Chen T and Xue Z Y 2020 Adv. Quantum Technol. 3 2000001
[12] Ai M Z, Li S, Hou Z B, He R, Qian Z H, Xue Z Y, Cui J M, Huang Y F, Li C F and Guo G C 2020 Phys. Rev. Appl. 14 054062
[13] Ruschhaupt A, Chen X, Alonso D and Muga J G 2012 New J. Phys. 14 093040
[14] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martínez- Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001
[15] Stefanatos D and Paspalakis E 2019 Phys. Rev. A 100 012111
[16] Grimaudo R, Castro A S M, Nakazato H and Messina A 2018 Ann. Phys. (Berlin) 530 1800198
[17] Barnes E, Calderon-Vargas F A, Dong W, Li B, Zeng J and Zhuang F 2022 Quantum Sci. Technol. 7 023001
[18] Güngördü U and Kestner J P 2019 Phys. Rev. A 100 062310
[19] Luo X, Yang B, Zhang X, Li L and Yu X 2017 Phys. Rev. A 95 052128
[20] Messina A and Nakazatob H 2014 J. Phys. A 47 445302
[21] Čadež T, Jefferson J H and Ramsǎk A 2014 Phys. Rev. Lett. 112 150402
[22] Hegerfeldt G C 2014 Phys. Rev. A 90 032110
[23] Zhang C P and Miao X Y 2023 Chin. Phys. Lett. 40 124201
[24] Wang S and Jiang W C 2022 Chin. Phys. B 31 013201
[25] He M R, Wang Z, Yao L F and Li Y 2023 Chin. Phys. B 32 124206
[26] Barnes E and Das Sarma S 2012 Phys. Rev. Lett. 109 060401
[27] Barnes E 2013 Phys. Rev. A 88 013818
[28] Economou S E and Barnes E 2015 Phys. Rev. B 91 161405
[29] Deng X H, Barnes E and Economou S E 2017 Phys. Rev. B 96 035441
[30] Premaratne S P, Yeh J H, Wellstood F C and Palmer B S 2019 Phys. Rev. A 99 012317
[31] Burkard G, Ladd T D, Pan A, Nichol J M and Petta J R 2023 Rev. Mod. Phys. 95 025003
[32] Elzerman J M, Hanson R, Beveren L HW,Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
[33] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[34] Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F and Duan L M 2014 Nature 514 72
[35] Ringbauer M, Meth M, Postler L, Stricker R, Blatt R, Schindler P and Monz T 2022 Nat. Phys. 18 1053
[36] Lin Y, Leibrandt D R, Leibfried D and Chou CW2020 Nature 581 273
[37] Wendin G 2017 Rep. Prog. Phys. 80 106001
[38] Magesan E, Gambetta JMand Emerson J 2012 Phys. Rev. A 85 042311
[39] Chow J M, Gambetta J M, Tornberg L, Koch Jens, Bishop L S, Houck A A, Johnson B R, Frunzio L, Girvin S M and Schoelkopf R J 2009 Phys. Rev. Lett. 102 090502
[40] Kelly J, Barends R, Campbell B, et al. 2014 Phys. Rev. Lett. 112 240504
[41] Gottesman D 1998 Phys. Rev. A 57 127
[1] Correcting on-chip distortion of control pulses with silicon spin qubits
Ming Ni(倪铭), Rong-Long Ma(马荣龙), Zhen-Zhen Kong(孔真真), Ning Chu(楚凝), Wei-Zhu Liao(廖伟筑), Sheng-Kai Zhu(祝圣凯), Chu Wang(王儲), Gang Luo(罗刚), Di Liu(刘頔), Gang Cao(曹刚), Gui-Lei Wang(王桂磊), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(1): 010308.
[2] Simulations of superconducting quantum gates by digital flux tuner for qubits
Xiao Geng(耿霄), Kaiyong He(何楷泳), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2024, 33(7): 070305.
[3] Enhancing quantum metrology for multiple frequencies of oscillating magnetic fields by quantum control
Xin Lei(雷昕), Jingyi Fan(范静怡), and Shengshi Pang(庞盛世). Chin. Phys. B, 2024, 33(6): 060304.
[4] Quantum circuit-based proxy blind signatures: A novel approach and experimental evaluation on the IBM quantum cloud platform
Xiaoping Lou(娄小平), Huiru Zan(昝慧茹), and Xuejiao Xu(徐雪娇). Chin. Phys. B, 2024, 33(5): 050307.
[5] Quantum control based on three forms of Lyapunov functions
Guo-Hui Yu(俞国慧) and Hong-Li Yang(杨洪礼). Chin. Phys. B, 2024, 33(4): 040201.
[6] Analytical solutions to the precession relaxation of magnetization with uniaxial anisotropy
Ze-Nan Zhang(张泽南), Zhen-Lin Jia(贾镇林), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2024, 33(4): 047502.
[7] Exact solutions for magnetohydrodynamic nanofluids flow and heat transfer over a permeable axisymmetric radially stretching/shrinking sheet
U. S. Mahabaleshwar, G. P. Vanitha, L. M. Pérez, Emad H. Aly, and I. Pop. Chin. Phys. B, 2024, 33(2): 020204.
[8] M2CS: A microwave measurement and control system for large-scale superconducting quantum processors
Jiawei Zhang(张家蔚), Xuandong Sun(孙炫东), Zechen Guo(郭泽臣), Yuefeng Yuan(袁跃峰), Yubin Zhang(张玉斌), Ji Chu(储继), Wenhui Huang(黄文辉), Yongqi Liang(梁咏棋), Jiawei Qiu(邱嘉威), Daxiong Sun(孙大雄), Ziyu Tao(陶子予), Jiajian Zhang(张家健), Weijie Guo(郭伟杰), Ji Jiang(蒋骥), Xiayu Linpeng(林彭夏雨), Yang Liu(刘阳), Wenhui Ren(任文慧), Jingjing Niu(牛晶晶), Youpeng Zhong(钟有鹏), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2024, 33(12): 120309.
[9] Casson hybrid nanofluid flow over a Riga plate for drug delivery applications with double diffusion
Abeer S. Alnahdi and Taza Gul. Chin. Phys. B, 2024, 33(10): 104701.
[10] Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
Rui-Zi Hu(胡睿梓), Sheng-Kai Zhu(祝圣凯), Xin Zhang(张鑫), Yuan Zhou(周圆), Ming Ni(倪铭), Rong-Long Ma(马荣龙), Gang Luo(罗刚), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(1): 010304.
[11] Majorana noise model and its influence on the power spectrum
Shumeng Chen(陈书梦), Sifan Ding(丁思凡), Zhen-Tao Zhang(张振涛), and Dong E. Liu(刘东). Chin. Phys. B, 2024, 33(1): 017101.
[12] Chiral current regulation and detection of Berry phase in triangular triple quantum dots
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚). Chin. Phys. B, 2023, 32(8): 087304.
[13] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[14] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[15] Blind quantum computation with a client performing different single-qubit gates
Guang-Yang Wu(吴光阳), Zhen Yang(杨振), Yu-Zhan Yan(严玉瞻), Yuan-Mao Luo(罗元茂), Ming-Qiang Bai(柏明强), and Zhi-Wen Mo(莫智文). Chin. Phys. B, 2023, 32(11): 110302.
No Suggested Reading articles found!