|
|
Vortex clusters and their active control in a cold Rydberg atomic system with PT-symmetric Bessel potential |
Zhuo Fan(范灼)1,2,†, Yi Shi(石逸)1,3,†, Hang Wang(王航)1,3, Yuan Zhao(赵元)1,2, Wei Peng(彭微)1,2,‡, and Siliu Xu(徐四六)1,2,§ |
1 Key Laboratory of Optoelectronic Sensing and Intelligent Control, Hubei University of Science and Technology, Xianning 437100, China; 2 School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; 3 School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China |
|
|
Abstract We propose an approach for generating robust two-dimensional (2D) vortex clusters (VCs) in a Rydberg atomic system by utilizing parity-time ($\mathcal{PT}$) symmetric optical Bessel potential. We show that the system supports novel multi-core VCs with four and eight cores, corresponding to topological charges 2 and 4, respectively. The stability of these VCs can be dynamically adjusted through the manipulation of the gain-loss component, Kerr nonlinearities, and the degree of nonlocality inherent in the Rydberg atoms. These VCs are confined within the first lattice well of the Bessel potential, and both the power and width of lights undergo a quasi-periodic breathing phenomenon, which is attributed to the power exchange between the light fields and Bessel potential. Both self-attractive and self-repulsive Kerr interactions can sustain robust VCs within this system. The insights presented here not only facilitate the creation and manipulation of 2D VCs through $\mathcal{PT}$-symmetric potentials but also pave the way for potential applications in optical information processing and transmission.
|
Received: 29 July 2024
Revised: 16 September 2024
Accepted manuscript online: 27 September 2024
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
11.30.Er
|
(Charge conjugation, parity, time reversal, and other discrete symmetries)
|
|
32.80.Ee
|
(Rydberg states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62275075), the Science and Technology Research Program of the Education Department of Hubei Province, China (Grant No. B2022188), the Natural Science Foundation of Hubei Province, China (Grant No. 2023AFC042), the Training Program of Innovation and Entrepreneurship for Undergraduates of Hubei Province, China (Grant No. S202210927003), and the Medical Project of Hubei University of Science and Technology (Grant No. 2023YKY08). |
Corresponding Authors:
Wei Peng, Siliu Xu
E-mail: vivipw7958@163.com;xusiliu1968@163.com
|
Cite this article:
Zhuo Fan(范灼), Yi Shi(石逸), Hang Wang(王航), Yuan Zhao(赵元), Wei Peng(彭微), and Siliu Xu(徐四六) Vortex clusters and their active control in a cold Rydberg atomic system with PT-symmetric Bessel potential 2024 Chin. Phys. B 33 120306
|
[1] Kivshar Y S and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (Cambridge: Academic) [2] Baizakov B B, Malomed B A and Salerno M 2004 Phys. Rev. A 70 053613 [3] Kartashov Y V, Vysloukh V A and Torner L 2009 Prog. Opt. 52 63 [4] Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002 [5] Kartashov Y V, Vysloukh V A and Torner L 2004 Phys. Rev. Lett. 93 093904 [6] Kartashov Y V, Vysloukh V A and Torner L 2005 Phys. Rev. Lett. 94 043902 [7] Kartashov Y V, Carretero-González R, Malomed B A, Vysloukh V A and Torner L 2005 Opt. Express 13 10703 [8] Ruelas A, Lopez-Aguayo S and Gutiérrez-Vega J C 2010 Phys. Rev. A 82 063808 [9] Wang X, Chen Z and Kevrekidis P G 2006 Phys. Rev. Lett. 96 083904 [10] Huang S, Zhang P, Wang X and Chen Z 2010 Opt. Lett. 35 2284 [11] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [12] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904 [13] Huang G, Deng L and Payne M G 2005 Phys. Rev. E 72 016617 [14] Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313 [15] Friedler I, Petrosyan D, Fleischhauer M and Kurizki G 2005 Phys. Rev. A 72 043803 [16] Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003 [17] Busche H, Huillery P, Ball S W, Ilieva T, Jones M P A and Adams C S 2017 Nat. Phys. 13 655 [18] Guo Y W, Xu S L, He J R, Deng P, Belić M R and Zhao Y 2020 Phys. Rev. A 101 023806 [19] Yang F, Yang S and You L 2019 Phys. Rev. Lett. 123 063001 [20] Bao S, Zhang H, Zhou J, Zhang L, Zhao J, Xiao L T and Jia S 2016 Phys. Rev. A 94 043822 [21] Jiao Y, Han X, Yang Z, Li J, Raithel G, Zhao J and Jia S 2016 Phys. Rev. A 94 023832 [22] Li B B, Zhao Y, Xu S L, Zhou Q, Fu Q, Ye F, Hua C B, Chen M W, Hu H J, Zhou Q Q and Qiu Z C 2023 Chin. Phys. Lett. 40 044201 [23] Xu S L, Zhou Q, Zhao D, Belić M R and Zhao Y 2020 Appl. Math. Lett. 104 106230 [24] Bai Z, Li W and Huang G 2019 Optica 6 309 [25] Hang C and Huang G 2018 Phys. Rev. A 98 043840 [26] Harris S E 1994 Opt. Lett. 19 2018 [27] Hang C, Konotop V V and Huang G 2009 Phys. Rev. A 79 033826 [28] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 [29] Bender C M 2007 Rep. Prog. Phys. 70 947 [30] Hang C, Huang G and Konotop V V 2013 Phys. Rev. Lett. 110 083604 [31] Zhang Z, Zhang Y, Sheng J, Yang L, Miri M, Christodoulides D N, He B, Zhang Y and Xiao M 2016 Phys. Rev. Lett. 117 123601 [32] Xue Y, Hang C, He Y, Bai Z, Jiao Y, Huang G, Zhao J and Jia S 2022 Phys. Rev. A 105 053516 [33] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11 [34] Suchkov S V, Sukhorukov A A, Huang J, Dmitriev S V, Lee C and Kivshar Y S 2016 Laser Photon. Rev. 10 177 [35] Feng L, El-Ganainy R and Ge L 2017 Nat. Photon. 11 752 [36] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402 [37] Li C, Huang C, Liu H and Dong L 2012 Opt. Lett. 37 4543 [38] Eliezer Y, Bahabad A and Malomed B A 2018 Phys. Rev. A 98 043830 [39] Hu S and Hu W 2012 J. Phys. B 45 225401 [40] Wang H, Wei Y, Huang X, Chen G and Ye H 2018 Chin. Phys. B 27 044203 [41] Chen H and Hu S 2014 Opt. Commun. 332 169 [42] Jin L, Hang C and Huang G 2023 Phys. Rev. A 107 053501 [43] Hang C, Li W and Huang G 2019 Phys. Rev. A 100 043807 [44] Kartashov Y V, Hang C, Huang G and Torner L 2016 Optica 3 1048 [45] Yang J and Lakoba T I 2007 Stud. Appl. Math. 118 153 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|