Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110308    DOI: 10.1088/1674-1056/ad8eb0
GENERAL Prev   Next  

Entanglement polygon inequalities for a class of mixed states

Xian Shi(石现)†
College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
Abstract  The study on the entanglement polygon inequality of multipartite systems has attracted much attention. However, most of the results are on pure states. Here we consider the property for a class of mixed states, which are the reduced density matrices of generalized $W$-class states in multipartite higher dimensional systems. First we show the class of mixed states satisfies the entanglement polygon inequalities in terms of Tsallis-$q$ entanglement, then we propose a class of tighter inequalities for mixed states in terms of Tsallis-$q$ entanglement. At last, we get an inequality for the mixed states, which can be regarded as a relation for bipartite entanglement.
Keywords:  entanglement polygon      inequality      $W$-class states      Tsallis-$q$ entanglement  
Received:  20 August 2024      Revised:  13 September 2024      Accepted manuscript online:  05 November 2024
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12301580).
Corresponding Authors:  Xian Shi     E-mail:  shixian01@gmail.com

Cite this article: 

Xian Shi(石现) Entanglement polygon inequalities for a class of mixed states 2024 Chin. Phys. B 33 110308

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Plenio M B and Virmani S S 2014 An introduction to entanglement theory quantum information and coherence (Springer) pp. 173-209
[3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[5] Harrow A, Hayden P and Leung D 2004 Phys. Rev. Lett. 92 187901
[6] Ekert A K 1991 Phys. Rev. Lett. 67 661
[7] Mirhosseini M, Magana-Loaiza O S, O Sullivan M N, Rodenburg B, Malik M, Lavery M P, Padgett M J, Gauthier D J and Boyd R W 2015 New J. Phys. 17 033033
[8] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[9] Zong X L, Yin H H, Song W and Cao Z L 2022 Front. Phys. 10 880560
[10] Christandl M and Winter A 2004 J. Math. Phys. 45 829
[11] Kim J S 2010 Phys. Rev. A 81 062328
[12] Luo Y, Tian T, Shao L H and Li Y 2016 Phys. Rev. A 93 062340
[13] Gour G and Guo Y 2018 Quantum 2 81
[14] Guo Y and Zhang L 2020 Phys. Rev. A 101 032301
[15] Shi X, Chen L and Hu M 2021 Phys. Rev. A 104 012426
[16] Jin Z X, Fei S M, Li-Jost X and Qiao C F 2022 Advanced Quantum Technologies 5 2100148
[17] Guo Y and Huang L 2023 Phys. Rev. A 107 042409
[18] Shen Z X, Wang K K and Fei S M 2023 Chin. Phys. B 32 120303
[19] Li B, Xie B, Zhang Z and Fan H 2024 Sci. China-Phys., Mech. Astron. 67 210312
[20] Qian X F, Alonso M A and Eberly J H 2018 New J. Phys. 20 063012
[21] Yang X, Yang Y H and Luo M X 2022 Phys. Rev. A 105 062402
[22] Shi X 2023 Eur. Phys. J. Plus 138 1
[23] Xie S and Eberly J H 2021 Phys. Rev. Lett. 127 040403
[24] Yang X, Yang Y H, Liu X Z, Fei S M and Luo M X 2024 Advanced Quantum Technologies 7 2400118
[25] San Kim J and Sanders B C 2008 J. Phys. A: Math. Theor. 41 495301
[26] Choi J H and Kim J S 2015 Phys. Rev. A 92 042307
[27] Shi X and Chen L 2020 Phys. Rev. A 101 032344
[28] Lai L M, Fei S M and Wang Z X 2021 J. Phys. A: Math. Theor. 54 425301
[29] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[30] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[1] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[2] Detection of the quantum states containingat most k-1 unentangled particles
Yan Hong(宏艳), Xianfei Qi(祁先飞), Ting Gao(高亭), and Fengli Yan(闫凤利). Chin. Phys. B, 2021, 30(10): 100306.
[3] Uncertainty relations in the product form
Xiaofen Huang(黄晓芬), Ting-Gui Zhang(张廷桂), Naihuan Jing(景乃桓). Chin. Phys. B, 2018, 27(7): 070302.
[4] Extended Bell inequality and maximum violation
Yan Gu(古燕), Haifeng Zhang(张海峰), Zhigang Song(宋志刚), Jiuqing Liang(梁九卿), Lianfu Wei(韦联福). Chin. Phys. B, 2018, 27(10): 100303.
[5] Free-matrix-based time-dependent discontinuous Lyapunov functional for synchronization of delayed neural networks with sampled-data control
Wei Wang(王炜), Hong-Bing Zeng(曾红兵), Kok-Lay Teo. Chin. Phys. B, 2017, 26(11): 110503.
[6] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[7] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[8] Strong violations of locality by testing Bell's inequality with improved entangled-photon systems
Wang Yao (王尧), Fan Dai-He (樊代和), Guo Wei-Jie (郭伟杰), Wei Lian-Fu (韦联福). Chin. Phys. B, 2015, 24(8): 084203.
[9] Quantum nonlocality of generic family of four-qubit entangled pure states
Ding Dong (丁东), He Ying-Qiu (何英秋), Yan Feng-Li (闫凤利), Gao Ting (高亭). Chin. Phys. B, 2015, 24(7): 070301.
[10] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[11] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[12] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[13] A novel study for impulsive synchronization of fractional-order chaotic systems
Liu Jin-Gui (刘金桂). Chin. Phys. B, 2013, 22(6): 060510.
[14] Minimum detection efficiency for the loophole-free confirmation of quantum contextuality
Xiang Yang (向阳), Hong Fang-Yu (洪方昱). Chin. Phys. B, 2013, 22(11): 110302.
[15] Novel delay dependent stability analysis of Takagi–Sugeno fuzzy uncertain neural networks with time varying delays
M. Syed Ali . Chin. Phys. B, 2012, 21(7): 070207.
No Suggested Reading articles found!