Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 110503    DOI: 10.1088/1674-1056/26/11/110503
GENERAL Prev   Next  

Free-matrix-based time-dependent discontinuous Lyapunov functional for synchronization of delayed neural networks with sampled-data control

Wei Wang(王炜)1,3, Hong-Bing Zeng(曾红兵)1,3, Kok-Lay Teo2
1. School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China;
2. Department of Mathematics and Statistics, Curtin University, Perth, WA 6102, Australia;
3. Key Laboratory for Electric Drive Control and Intelligent Equipment of Hunan Province, Zhuzhou 412007, China
Abstract  This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality (LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.
Keywords:  neural networks      synchronization      sampled-data control      free-matrix-based inequality  
Received:  11 April 2017      Revised:  25 July 2017      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61304064), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 15B067 and 16C0475), and a Discovering Grant from Australian Research Council.
Corresponding Authors:  Hong-Bing Zeng     E-mail:  9804zhb@163.com

Cite this article: 

Wei Wang(王炜), Hong-Bing Zeng(曾红兵), Kok-Lay Teo Free-matrix-based time-dependent discontinuous Lyapunov functional for synchronization of delayed neural networks with sampled-data control 2017 Chin. Phys. B 26 110503

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Wu Z G, Shi P, Su H and Chu J 2013 IEEE Transactions on Neural Networks and Learning Systems 24 1177
[3] Zhang C K, Jiang L, He Y, Wu Q H and Wu M 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 2743
[4] Ma D Z, Li X U, Sun Q Y and Zhang H G 2016 Acta Phys. Sin. 65 200501(in Chinese)
[5] Zeng H B, Park J H, Xiao S P and Liu Y 2015 Nonlinear Dynamics 82 851
[6] Leung Y T A, Li X F, Chu Y D and Zhang H 2015 Chin. Phys. B 24 0100502
[7] Wu Z G, Shi P, Su H and Chu J 2013 IEEE Transactions on Cybernetics 43 1796
[8] Zeng H B, He Y, Wu M and Xiao H 2014 IEEE Transactions on Cybernetics 44 785
[9] Zeng H B, Park J H, Zhang C F and Wang W 2015 Journal of the Franklin Institute 352 1284
[10] He Y, Liu G and Rees D 2007 IEEE Transactions on Neural Networks 18 310
[11] Li T, Guo L, Sun C and Lin C 2008 IEEE Transactions on Neural Networks 19 726
[12] Zhang C K, He Y, Jiang L, Wu Q H and Wu M 2014 IEEE Transactions on Neural Networks and Learning Systems 25 1263
[13] Zhang X M and Han Q L 2011 IEEE Transactions on Neural Networks and Learning Systems 22 1180
[14] Zhang X M and Han Q L 2014 Neural Networks 54 57
[15] Zeng H B, He Y, Wu M and Xiao H 2015 Neurocomputing 161 148
[16] Liu Y, Wang Z and Liu X 2006 Neural Networks 19 667
[17] He Y, Ji M D, Zhang C K and Wu M 2016 Neural Networks 77 80
[18] Zeng H B, Park J H and Shen H 2015 Neurocomputing 149 1092
[19] Zhang C K, He Y, Jiang L, Lin W J and Wu M 2017 Applied Mathematics and Computation 294 102
[20] Park J H and Kwon O M 2009 Chaos Solitons& Fractals 42 1299
[21] Zeng H B, Teo K L, He Y, Xu H and Wang W 2017 Neurocomputing 260 25
[22] Li P, Cao J and Wang Z 2007 Physica A 373 261
[23] Liu H, Li S G, Wang H X and Li G J X 2017 Chin. Phys. B 26 030504
[24] Liu H, Yu H J and Xiang W 2012 Chin. Phys. B 21 120505
[25] Yu W and Cao J 2007 Physica A 373 252
[26] Karimi H R and Maass P 2009 Chaos, Solitons& Fractals 41 1125
[27] Li T, Wang T, Zhang G and Fei S 2016 Neurocomputing 205 498
[28] Zeng H B, He Y, Wu M and She J 2015 Automatica 60 189
[29] Zeng H B, He Y, Wu M and She J 2015 IEEE Transactions on Automatic Control 60 2768
[30] Han X, Wu H and Fang B 2016 Neurocomputing 201 40
[31] Bao H, Park J H and Cao J 2016 Neural Networks 81 16
[32] Qi D, Liu M, Qiu M and Zhang S 2010 IEEE Transactions on Neural Networks 21 1358
[33] Mu X and Chen Y 2016 Neurocomputing 175 293
[34] Liu K and Fridman E 2012 Automatica 48 102
[35] Gao H, Chen T and Lam J 2008 Automatica 44 39
[36] Fridman E 2010 Automatica 46 421
[37] Zeng H B, Teo K L and He Y 2017 Automatica 82 328
[38] Zhang C, He Y and Wu M 2010 Neurocomputing 74 265
[39] Wu Z G, Park J H, Su H and Chu J 2012 Nonlinear Dynamics 69 2021
[40] Park P G, Ko J W and Jeong C 2011 Automatica 47 235
[41] Seuret A and Gouaisbaut F 2013 Automatica 49 2860
[42] Lee T H and Park J H 2017 IEEE Transactions on Automatic Control
[43] Lee T H and Park J H 2017 Nonlinear Analysis:Hybrid Systems 24 132
[44] Lee T H and Park J H 2017 IEEE Transactions on Systems, Man, and Cybernetics:Systems
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[3] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[4] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[5] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[6] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[7] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[8] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[9] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[10] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[11] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[12] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[13] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[14] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[15] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
No Suggested Reading articles found!