Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090504    DOI: 10.1088/1674-1056/22/9/090504
GENERAL Prev   Next  

Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay

Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶)
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Abstract  This paper deals with the cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay. Through constructing an appropriate Lyapunov-Krasovskii functional and applying the theory of the Kronecker product of matrices and the linear matrix inequality (LMI) technique, several novel sufficient conditions for cluster exponential synchronization are obtained. These cluster exponential synchronization conditions adopt the bounds of both time delay and its derivative, which are less conservative. Finally, the numerical simulations are performed to show the effectiveness of the theoretical results.
Keywords:  complex network      cluster exponential synchronization      linear matrix inequality      time-varying delay  
Received:  17 December 2012      Revised:  18 March 2013      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  87.85.dq (Neural networks)  
  02.10.Yn (Matrix theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61074073 and 61034005), the Fundamental Research Funds for the Central Universities of China (Grant No. N110504001), and the Open Project of the State Key Laboratory of Management and Control for Complex Systems, China (Grant No. 20110107).
Corresponding Authors:  Zhang Hua-Guang     E-mail:  hgzhang@ieee.org

Cite this article: 

Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶) Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay 2013 Chin. Phys. B 22 090504

[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Barabási A L and Albert R 1999 Science 286 509
[3] Wang X F and Chen G R 2003IEEE Circ. Syst. Mag. 3 6
[4] Wang X F and Chen G R 2002 IEEE Trans. Circ. Syst. I: Fund. Theory Appl. 49 54
[5] Wu C W and Chua L O 1995 IEEE Trans. Circ. Syst. I: Fund. Theory Appl. 42 430
[6] Li Z and Chen G R 2004 Phys. Lett. A 324 166
[7] Yu W W, Chen G R and Lü J H 2009 Automatica 45 429
[8] Zhao J, Hill D J and Liu T 2009 Automatica 45 2502
[9] Lu J Q, Ho D W C and Cao J D 2010 Automatica 46 1215
[10] Zhang H G, Liu Z W, Huang G B and Wang Z S 2010 IEEE Trans.Neural Netw. 21 91
[11] Yu W W, Cao J D and Lü J H 2008 SIAM J. Appl. Dyn. Syst. 7 108
[12] Wang Z S, Zhang H G and Li P 2010 IEEE Trans. Syst. Man Cybern. B 40 1596
[13] Wu Z G, Shi P, Su H Y and Chu J 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1368
[14] Cao J D, Li P and Wang W W 2006 Phys. Lett. A 353 318
[15] Wang Z D, Wang Y and Liu Y R 2010 IEEE Trans. Neural Netw. 21 11
[16] Gong D W, Zhang H G, Wang Z S and Huang B N 2012 Neurocomputing 82 14
[17] Zhang H G, Gong D W and Wang Z S 2011 Chin. Phys. B 20 040512
[18] Cao J D, Chen G R and Li P 2008 IEEE Trans. Syst. Man Cybern. B 38 488
[19] Song Q K 2009 Neurocomputing 72 3907
[20] Cao J D and Li L L 2009 Neural Netw. 22 335
[21] Ma Z J, Liu Z R and Zhang G 2006 Chaos 16 023103
[22] Qin W X and Chen G R 2004 Physica D 197 375
[23] Yao H X and Wang S G 2012 Chin. Phys. B 21 110506
[24] Wu Z Y and Fu X C 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1628
[25] Wu J S, Jiao L C and Chen G R 2011 Chin. Phys. B 20 060503
[26] Chen J L and Chen X H 2001 (Beijing: Tsinghua University Press)
[27] Gu K Q, Kharitonov V L and Chen J 2003 (Boston, MA: Birkhäuser)
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[15] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
No Suggested Reading articles found!