Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110309    DOI: 10.1088/1674-1056/ad73b6
SPECIAL TOPIC — Fabrication and manipulation of the second-generation quantum systems Prev  

In situ non-destructive measurement of Josephson junction resistance using fritting contact technique

Lei Du(杜磊)1,2, Hao-Ran Tao(陶浩然)1,2, Liang-Liang Guo(郭亮亮)1,2, Hai-Feng Zhang(张海峰)1,2, Yong Chen(陈勇)1,2, Xin Tian(田昕)3, Chi Zhang(张驰)3, Zhi-Long Jia(贾志龙)3, Peng Duan(段鹏)1,2,†, and Guo-Ping Guo(郭国平)1,2,3,‡
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Origin Quantum Computing Technology (Hefei) Co., Ltd., Hefei 230088, China
Abstract  Conventional four-probe methods for measuring the resistance of Josephson junctions can damage superconducting thin films, making them unsuitable for frequency measurements of superconducting qubits. In this study, we present a custom probe station measurement system that employs the fritting contact technique to achieve in situ, non-destructive measurements of Josephson junction resistance. Our experimental results demonstrate that this method allows for accurate prediction of qubit frequency with an error margin of 17.2 MHz. Moreover, the fritting contact technique does not significantly affect qubit coherence time or the integrity of the superconducting film, confirming its non-destructive nature. This innovative approach provides a dependable foundation for frequency tuning and addressing frequency collision issues, thus supporting the advancement and practical deployment of superconducting quantum computing.
Keywords:  non-destructive      fritting contact      qubit frequency      Josephson junction resistance  
Received:  22 July 2024      Revised:  26 August 2024      Accepted manuscript online:  27 August 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034018 and 11625419).
Corresponding Authors:  Peng Duan, Guo-Ping Guo     E-mail:  pengduan@ustc.edu.cn;gpguo@ustc.edu.cn

Cite this article: 

Lei Du(杜磊), Hao-Ran Tao(陶浩然), Liang-Liang Guo(郭亮亮), Hai-Feng Zhang(张海峰), Yong Chen(陈勇), Xin Tian(田昕), Chi Zhang(张驰), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平) In situ non-destructive measurement of Josephson junction resistance using fritting contact technique 2024 Chin. Phys. B 33 110309

[1] He K Y, Geng X, Huang R T, et al. 2021 Chin. Phys. B 30 080304
[2] Zheng W and Yu Y 2023 Physics 52 731
[3] Brecht T, Pfaff W, Wang C, et al. 2016 npj Quantum Information 2 16002
[4] Rosenberg D, Kim D, Das R, et al. 2017 npj Quantum Information 3 42
[5] Walter T, Kurpiers P, Gasparinetti S, et al. 2017 Phys. Rev. Appl. 7 054020
[6] Bultink C C, Tarasinski B, Haandbæk N, et al. 2018 Appl. Phys. Lett. 112 092601
[7] Richardson C J K, Lordi V, Misra S, et al. 2020 MRS Bulletin 45 485
[8] Burnett J J, Bengtsson A, Scigliuzzo M, et al. 2019 npj Quantum Information 5 54
[9] Ware M, Johnson B R, Gambetta J M, et al. 2019 arXiv:1905.11480
[10] Brink M, Chow J M, Hertzberg J, et al. 2018 2018 IEEE International Electron Devices Meeting (IEDM), December 1-5, 2018, San Francisco, CA, USA, p. 6.1.1
[11] Chow J M, Córcoles A D, Gambetta J M, et al. 2011 Phys. Rev. Lett. 107 080502
[12] Osman A, Fernández-Pendás J, Warren C, et al. 2023 Phys. Rev. Res. 5 043001
[13] Kreikebaum J M, O0Brien K P, Morvan A, et al. 2020 Supercond. Sci. Technol. 33 06LT02
[14] Moskaleva D A, Korshakov N D, Moskalev D O, et al. 2024 arXiv: 2403.01894
[15] Takahashi T, Kouma N, Doi Y, et al. 2022 Jpn. J. Appl. Phys. 62 SC1002
[16] Hertzberg J B, Zhang E J, Rosenblatt S, et al. 2021 npj Quantum Information 7 129
[17] Zhang E J, Srinivasan S, Sundaresan N, et al. 2022 Sci. Adv. 8 eabi6690
[18] Kim H, Jünger C, Morvan A, et al. 2022 Appl. Phys. Lett. 121 142601
[19] Koch J, Yu T M, Gambetta J, et al. 2007 Phys. Rev. A 76 042319
[20] Wu X, Long J L, Ku H S, et al. 2017 Appl. Phys. Lett. 111 032602
[21] Costache M V, Bridoux G, Neumann I, et al. 2012 J. Vac. Sci. Technol. 30 04E105
[22] Foroozani N, Hobbs C, Hung C C, et al. 2019 Quantum Sci. Technol. 4 025012
[23] Ambegaokar V and Baratoff A 1963 Phys. Rev. Lett. 10 486
[24] Liu D S, Shih M K and Huang W H 2007 Microelectronics Reliability 47 1086
[25] Wang C, Li X, Xu H, et al. 2022 npj Quantum Information 8 3
[26] Kwon S, Fadavi Roudsari A, Benningshof O W B, et al. 2018 J. Appl. Phys. 124 033903
[27] Ye Y, Ge Z Y, Wu Y, et al. 2019 Phys. Rev. Lett. 123 050502
[28] Wang Z, Li H, Feng W, et al. 2020 Phys. Rev. Lett. 124 013601
[29] Zhong Y, Chang H S, Bienfait A, et al. 2021 Nature 590 571
[30] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[31] Kataoka K, Itoh T, Inoue K, et al. 2004 17th IEEE International Conference on Micro Electro Mechanical Systems
[32] Kataoka K, Kawamura S, Itoh T, et al. 2003 Sensors and Actuators A: Physical 103 116
[33] Itoh T, Kataoka K, Engelmann G, et al. 2000 Design, Test, Integration, and Packaging of MEMS/MOEMS 4019 244
[34] Kataoka K, Itoh T and Suga T 2005 Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts, 2005, 2005, Chicago, IL, USA, p. 259
[35] Kataoka K, Itoh T and Suga T 2003 IEEE Transactions on Components and Packaging Technologies 26 382
[36] Blais A, Huang R S, Wallraff A, et al. 2004 Phys. Rev. A 69 062320
[37] Murray C E 2021 Materials Science and Engineering: R: Reports 146 100646
[38] Lisenfeld J, Bilmes A, Megrant A, et al. 2019 npj Quantum Information 5 105
[1] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[2] Raman spectroscopy characterization of two-dimensional materials
Fang Liang(梁芳), Hejun Xu(徐何军), Xing Wu(吴幸), Chaolun Wang(王超伦), Chen Luo(骆晨), Jian Zhang(张健). Chin. Phys. B, 2018, 27(3): 037802.
[3] Concrete damage diagnosed using the non-classical nonlinear acoustic method
Zhou Dao(周到), Liu Xiao-Zhou(刘晓宙), Gong Xiu-Fen(龚秀芬), Nazarov V E, and Ma Li(马力). Chin. Phys. B, 2009, 18(5): 1898-1905.
[4] The non-destructive threshold of the graphite surface by STM in the ultra-fast pulse mode
Xu Chun-Kai(徐春凯), Wei Zheng(魏征), Chen Xiang-Jun(陈向军), and Xu Ke-Zun(徐克尊). Chin. Phys. B, 2007, 16(8): 2315-2318.
No Suggested Reading articles found!