Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070207    DOI: 10.1088/1674-1056/21/7/070207
GENERAL Prev   Next  

Novel delay dependent stability analysis of Takagi–Sugeno fuzzy uncertain neural networks with time varying delays

M. Syed Ali
Department of Mathematics, Thiruvalluvar University, Vellore 632 106, Tamilnadu, India
Abstract  This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi--Sugeno (T--S) model. The main results given here focus on the stability criteria using a new Lyapunov functional. New relaxed conditions and new linear matrix inequality-based designs are proposed that outperform the previous results found in the literature. Numerical examples are provided to show that the achieved conditions are less conservative than the existing ones in the literature.
Keywords:  neutral neural networks      linear matrix inequality      Lyapunov stability      time varying delays  
Received:  26 September 2011      Accepted manuscript online: 
PACS:  02.30.Ks (Delay and functional equations)  
  02.30.Sa (Functional analysis)  
  02.60.Cb (Numerical simulation; solution of equations)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Corresponding Authors:  M. Syed Ali     E-mail:  syedgru@gmail.com

Cite this article: 

M. Syed Ali Novel delay dependent stability analysis of Takagi–Sugeno fuzzy uncertain neural networks with time varying delays 2012 Chin. Phys. B 21 070207

[1] Cohen M and Grossberg S 1983 IEEE Trans. Syst. Man Cyber. 13 815.
[2] Wang L and Zou X 2002 Neural Networks 15 415
[3] Wang L and Zou X 2002 Physica D 170 162
[4] Huang Z, Wang X and Xia Y 2008 Int. J. Circ. Theor. App. 36 345
[5] Gau R S, Hsieh J G and Lien C H 2008 Int. J. Circ. Theor. App. 36 451
[6] Zhang J 2004 Int. J. Circ. Theor. App. 32 11
[7] Mohamad S 2003 Appl. Math. Comput. 135 17
[8] Chua L O and Yang L 1988 IEEE Trans. Circ. Syst. I 35 1257
[9] Yu W, Cao J and Wang J 2007 Neural Networks 20 810
[10] Baldi P and Atiya A F 1994 IEEE Trans. Neural Netw. 5 612
[11] Liao X, Chen G and Sanchez E N 2002 Neural Networks 15 855
[12] Wang Z, Lam J and Burnham K J 2002 IEEE Trans. Automat. Control 47 478
[13] Du B and Lam J 2009 Neural Networks 22 343
[14] Arik S 2000 IEEE Trans. Circ. Syst. I 47 1089
[15] Arik S and Tavsanoglu V 2000 IEEE Trans. Circ. Syst. I 47 571
[16] Liao X, Wong K W, Wu Z and Chen G 2001 IEEE Trans. Circ. Syst. I 48 1355
[17] Shi P and Shue S P 1999 IEEE Trans. Autom. Control 44 108
[18] Singh V 2005 IEEE Trans. Circ. Syst. II 52 33
[19] Arik S 2005 Chaos Soliton. Fract. 26 1407
[20] Cao J and Huang D S and Qu Y 2005 Chaos Soliton. Fract. 23 221
[21] Xu S, Lam J and Ho D W C 2005 Phys. Lett. A 342 322
[22] Zuo Z and Wang Y 2006 Leucture Notes in Computer Science 4113 216
[23] Park J H, Kwon O M and Lee S M 2008 J. Comput. Appl. Math. 196 224
[24] Xu S, Lam J, Ho D W C and Zou Y 2005 J. Comput. Appl. Math. 183 16
[25] Rakkiyappan R and Balasubramaniam P 2008 Neurocomputing 71 1039
[26] Feng J, Xu S and Zou Y 2009 Neurocomputing 72 2576
[27] Zhu J, Zhang Q and Yang C 2009 Neurocomputing 72 2609
[28] Park J H and Kwon O M 2009 Chaos Soliton. Fract. 41 1174
[29] Takagi T and Sugeno M 1985 IEEE Trans. Syst. Man. Cybern. 15 116
[30] Takagi T and Sugeno M 1993 Fuzzy Sets and Systems 45 135
[31] Cao Y Y and Frank P M 2001 Fuzzy Sets and Systems 124 213
[32] Tanaka K, Ikede T and Wang H O 1996 IEEE Trans. Fuzzy Systems 4 1
[33] Tanaka K, Ikede T and Wang H O 1997 Proc. IEEE Onternational Conference on Fuzzy Systems, July 5, 1997 Barcelona, Spain, p. 171
[34] Tanaka K, Ikede T and Wang H O 1998 IEEE Trans. Fuzzy Systems 6 250
[35] Huang H, Ho D W C and Lam J 2005 IEEE Trans. Circ. Syst. II 52 251
[36] Lou X and Cui B 2007 Fuzzy Sets and Systems 158 2746
[37] Syed Ali M and Balasubramaniam P 2009 Communications in Nonlinear Science and Numerical Simulation 14 2776
[38] Syed Ali M and Balasubramaniam P 2009 Neurocomputing 72 1347
[39] Liu B and Shi P 2009 Phys. Lett. A 373 1830
[40] Li H, Chen B, Lin C and Zhou Q 2009 Neurocomputing 72 2017
[41] Gahinet P, Nemirovski A, Laub A and Chilali M 1995 LMI Control Toolbox User's Guide (Massachusetts: The Mathworks)
[42] Boyd B, Ghoui L E, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadephia: SIAM)
[43] Mao X, Koroleva N and Rodkina A 1998 Systems Control. Lett. 35 325
[1] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[2] Double compound combination synchronization among eight n-dimensional chaotic systems
Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly. Chin. Phys. B, 2018, 27(8): 080502.
[3] Intra-layer synchronization in duplex networks
Jie Shen(沈洁), Longkun Tang(汤龙坤). Chin. Phys. B, 2018, 27(10): 100503.
[4] Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor—actuator networks
Jian-Zhong Zhang(张建中), Bao-Tong Cui(崔宝同), Bo Zhuang(庄波). Chin. Phys. B, 2017, 26(9): 090201.
[5] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[6] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[7] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[8] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[9] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[10] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[11] Stability analysis and control synthesis of uncertain Roesser-type discrete-time two-dimensional systems
Wang Jia (王佳), Hui Guo-Tao (会国涛), Xie Xiang-Peng (解相朋). Chin. Phys. B, 2013, 22(3): 030206.
[12] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[13] Adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions
Dai Hao (戴浩), Jia Li-Xin (贾立新), Zhang Yan-Bin (张彦斌). Chin. Phys. B, 2012, 21(12): 120508.
[14] Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay
Wang Shen-Quan (王申全), Feng Jian (冯健), Zhao Qing (赵青). Chin. Phys. B, 2012, 21(12): 120701.
[15] Robust H control for uncertain systems with heterogeneous time-varying delays via static output feedback
Wang Jun-Wei (王军威), Zeng Cai-Bin (曾才斌 ). Chin. Phys. B, 2012, 21(11): 110206.
No Suggested Reading articles found!