Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100503    DOI: 10.1088/1674-1056/abec33
GENERAL Prev   Next  

Adaptive synchronization of chaotic systems with less measurement and actuation

Shun-Jie Li(李顺杰)1,†, Ya-Wen Wu(吴雅文)1, and Gang Zheng(郑刚)2
1 School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 201144, China;
2 INRIA Lille-Nord Europe, 40 Avenue Halley, 59650, Villeneuve d'Ascq, France
Abstract  We investigate the synchronization problem between identical chaotic systems only when necessary measurement (output) and actuation (input) are needed to be implemented by the adaptive controllers. A sufficient condition is derived based on the Lyapunov stability theory and Schur complementary lemma. Moreover, the theoretic result is applied to the Rikitake system and the hyperchaotic Liu system to show its effectiveness and correctness. Numerical simulations are presented to verify the results.
Keywords:  chaotic systems      adaptive synchronization      linear matrix inequality  
Received:  15 January 2021      Revised:  20 February 2021      Accepted manuscript online:  05 March 2021
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61573192 and 51875293).
Corresponding Authors:  Shun-Jie Li     E-mail:  shunjie.li@nuist.edu.cn

Cite this article: 

Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚) Adaptive synchronization of chaotic systems with less measurement and actuation 2021 Chin. Phys. B 30 100503

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Hoang T M 2010 World Academy of Science, Engineering and Technology 39 633
[3] Liao T L and Tsai S H 2000 Chaos, Solitons and Fractals 11 1387
[4] Zheng G, Boutat D, Floquet T and Barbot J P 2009 Chaos, Solitons and Fractals 41 1510
[5] Abd M H, Tahir F R, Al-Suhail G A and Pham V T 2017 Nonlinear Dyn. 90 2583
[6] Vuksanovic V and Gal V 2005 Autonomic Neurosci. 121 94
[7] Wang L, Dong T and Ge M 2019 Appl. Math. Comput. 347 293
[8] Shi H and Wang L 2019 Acta Phys. Sin. 68 200501 (in Chinese)
[9] Chen J, Yan D, Duan S and Wang L 2020 Chin. Phys. B 29 110504
[10] Vaidyanathan S 2015 Int. J. ChemTech Res. 8 700
[11] Li Y, Chen L, Cai Z et al. 2004 Chaos, Solitons and Fractals 22 767
[12] Zheng G, Boutat D, Floquet T and Barbot J P 2008 Int. J. Bifur. Chaos 18 2063
[13] Zheng G and Boutat D 2011 IET Control Theor. Appl. 5 308
[14] Yassen M T 2005 Chaos, Solitons and Fractals 26 913
[15] Huijberts H and Nijmeijer H 2007 Nonlinear Chaos Control and Synchronization in Schöl E and Schuster H G (eds) Handbook of Chaos Control 2nd edn (New York: Wiley VCH Verlag) p. 719-749
[16] Niu H and Zhang G 2013 Acta Phys. Sin. 62 130502 (in Chinese)
[17] Yau H T 2004 Chaos, Solitons and Fractals 22 341
[18] Ni J, Liu C, Liu K and Liu L 2014 Chin. Phys. B 23 100504
[19] Liao T L and Tsai S H 1999 J. Franklin Institute 336 925
[20] Wang Y, Guan Z H and Wang H 2003 Phys. Lett. A 312 34
[21] Wang X and Wang Y 2011 Nonlinear Dyn. 65 311
[22] Huang D 2005 Phys. Rev. E 71 037203
[23] Guo R 2008 Phys. Lett. A 372 5593
[24] Fu G and Li Z 2010 Chin. Phys. B 19 060505
[25] Zhang X, Zhu H and Yao H 2012 J. Dyn. Control Syst. 18 467
[26] Guo R 2017 Nonlinear Dyn. 90 53
[27] Asadollahi M, Ghiasi A R and Badamchizadeh M A 2020 ISA Trans. 98 137
[28] Wang C and Ge SS 2001 Int. J. Bifur. Chaos 11 1743
[29] Bowong S and Kakmeni FMM 2004 Chaos, Solitons and Fractals 21 999
[30] Singh J P, Pham V T and Hayat T 2018 Chin. Phys. B 27 100501
[31] Hyungbo S, Young I and Jin H 2001 Syst. Control Lett. 42 233
[32] Farza M, M'Saad M, Maatoug T and Kamoun M 2009 Automatica 45 2292
[33] Yu L 2002 Robust Control: an LMI Approach (Beijing: Qinghua University Press) p. 8 (in Chinese)
[34] Ito K 1980 Earth Planet. Sci. Lett. 51 451
[35] Liu L, Liu C and Zhang Y 2008 Chin. J. Phys. 46 386
[1] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[2] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[3] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[4] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[5] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[6] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[7] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东). Chin. Phys. B, 2015, 24(3): 030504.
[8] Applications of modularized circuit designs in a new hyper-chaotic system circuit implementation
Wang Rui (王蕊), Sun Hui (孙辉), Wang Jie-Zhi (王杰智), Wang Lu (王鲁), Wang Yan-Chao (王晏超). Chin. Phys. B, 2015, 24(2): 020501.
[9] A novel adaptive-impulsive synchronization of fractional-order chaotic systems
Leung Y. T. Andrew, Li Xian-Feng, Chu Yan-Dong, Zhang Hui. Chin. Phys. B, 2015, 24(10): 100502.
[10] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[11] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[12] Approximation-error-ADP-based optimal tracking control for chaotic systems with convergence proof
Song Rui-Zhuo (宋睿卓), Xiao Wen-Dong (肖文栋), Sun Chang-Yin (孙长银), Wei Qing-Lai (魏庆来). Chin. Phys. B, 2013, 22(9): 090502.
[13] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[14] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[15] A novel study for impulsive synchronization of fractional-order chaotic systems
Liu Jin-Gui (刘金桂). Chin. Phys. B, 2013, 22(6): 060510.
No Suggested Reading articles found!