Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 070302    DOI: 10.1088/1674-1056/27/7/070302
GENERAL Prev   Next  

Uncertainty relations in the product form

Xiaofen Huang(黄晓芬)1, Ting-Gui Zhang(张廷桂)1, Naihuan Jing(景乃桓)2,3
1 School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China;
2 School of Mathematics, South China University of Technology, Guangzhou 510640, China;
3 Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
Abstract  We study the uncertainty relation in the product form of variances and obtain some new uncertainty relations with weight, which are shown to be tighter than those derived from the Cauchy-Schwarz inequality.
Keywords:  uncertainty relation      observables      generalized Cauchy-Schwarz inequality  
Received:  22 January 2018      Revised:  23 April 2018      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11501153, 11461018, and 11531003) and the Simons Foundation (Grant No. 523868).
Corresponding Authors:  Ting-Gui Zhang     E-mail:  tinggui333@163.com

Cite this article: 

Xiaofen Huang(黄晓芬), Ting-Gui Zhang(张廷桂), Naihuan Jing(景乃桓) Uncertainty relations in the product form 2018 Chin. Phys. B 27 070302

[1] Gühne O 2004 Phys. Rev. Lett. 92 117903
[2] Hofmann H F and Takeuchi S 2003 Phys. Rev. A 68 032103
[3] Fuchs C A and Peres A 1996 Phys. Rev. A 53 2038
[4] Mandelstam L and Tamm I G 1945 J. Phys. (Moscow) 9 249
[5] Mondal D and Pati A K 2016 Phys. Lett. A 380 1395
[6] Mondal D, Datta C and Sazim S 2016 Phys. Lett. A 380 689
[7] Deutsch D 1983 Phys. Rev. Lett. 50 631
[8] Xiao Y, Jing N, Fei S M, Li T, Li-Jost X, Ma T and Wang Z D 2016 Phys. Rev. A 93 042125
[9] Maassen H and Uffink J B K 1988 Phys. Rev. Lett. 60 1103
[10] Song Q C, Li J L, Peng G X and Qiao C F 2017 arXiv:1701.01072v3[quant-ph]
[11] Chen B, Cao N P, Fei S M and Long G L 2016 Quan. Inf. Process. 15 3909
[12] Chen B and Fei S M 2015 Sci. Rep. 5 14238
[13] Chen B, Fei S M and Long G L 2016 Quan. Inf. Pro. 15 2639
[14] Luo S and Zhang Q 2004 IEEE Trans. Inf. Theory 50 1778
[15] Puchala Z, Rudnicki Ł and Życzkowski K 2013 J. Phys. A:Math. Theor. 46 272002
[16] Rudnicki Ł, Puchala Z and Życzkowski K 2014 Phys. Rev. A 89 052115
[17] Rudnicki Ł 2015 Phys. Rev. A 91 032123
[18] Xiao Y, Jing N, Li-Jost X and Fei S M 2016 Sci. Rep. 6 23201
[19] Wang K, Zhan X, Bian Z, Li J, Zhang Y and Xue P 2016 Phys. Rev. A 93 052108
[20] Ma W, Chen B, Liu Y, Wang M, Ye X, Kong F, Shi F, Fei S M and Du J 2017 Phys. Rev. Lett. 118 180402
[21] Heisenberg W 1927 Z. Phys. 43 172
[22] Robertson H P 1929 Phys. Rev. 34 163
[23] Schrödinger E 1930 Ber. Kgl. Akad. Wiss. Berlin 19 296
[24] Callebaut D K 1965 J. Math. Anal. Appl. 12 491
[25] Milne E A 1925 Monthly Not. Roy. Astron. Soc. 85 979
[26] Mondal D, Bagchi S and Pati A 2017 Phys. Rev. A 95 052117
[27] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
[28] Dammeier L, Schwonnek R and Werner R F 2015 New J. Phys. 17 093046
[29] Abbott A A, Alzieu P L, Hall M J W and Branciard C 2016 Mathematics 4 8
[30] Yao Y, Xiao X, Wang X and Sun C P 2015 Phys. Rev. A 91 062113
[1] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[2] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[3] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[4] Reduction of entropy uncertainty for qutrit system under non-Markov noisy environment
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(4): 040306.
[5] On the time-independent Hamiltonian in real-time and imaginary-time quantum annealing
Jie Sun(孙杰)† and Songfeng Lu(路松峰)‡. Chin. Phys. B, 2020, 29(10): 100303.
[6] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[7] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[8] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[9] Quantum information entropy for one-dimensional system undergoing quantum phase transition
Xu-Dong Song(宋旭东), Shi-Hai Dong(董世海), Yu Zhang(张宇). Chin. Phys. B, 2016, 25(5): 050302.
[10] Reduction of entropic uncertainty in entangled qubits system by local JJ-symmetric operation
Zhang Shi-Yang (张诗阳), Fang Mao-Fa (方卯发), Zhang Yan-Liang (张延亮), Guo You-Neng (郭有能), Zhao Yan-Jun (赵艳君), Tang Wu-Wei (唐武伟). Chin. Phys. B, 2015, 24(9): 090304.
[11] Information entropy for static spherically symmetric black holes
Jiang Ji-Jian(蒋继建) and Li Chuan-An(李传安). Chin. Phys. B, 2009, 18(2): 451-456.
[12] Higher-order squeezing of quantum field and higher-order uncertainty relations in non-degenerate four-wave mixing
Li Xi-Zeng (李希曾), Su Bao-Xia (苏保霞), Chai Lu (柴路). Chin. Phys. B, 2005, 14(9): 1828-1833.
[13] Uncertainty relation and black hole entropy of Kerr spacetime
Hu Shuang-Qi (胡双启), Zhao Ren (赵仁). Chin. Phys. B, 2005, 14(7): 1477-1481.
[14] Higher-order squeezing of quantum electromagnetic fields and higher-order uncertainty relations in two-mode squeezed states
Li Xi-Zeng (李希曾), Su Bao-Xia (苏保霞), Chai Lu (柴路). Chin. Phys. B, 2004, 13(12): 2058-2063.
[15] Entropy squeezing for a two-level atom in the Jaynes-Cummings model with an intensity-depend coupling
Li Chun-Xian (李春先), Fang Mao-Fa (方卯发). Chin. Phys. B, 2003, 12(3): 294-299.
No Suggested Reading articles found!