Special Issue:
Featured Column — DATA PAPER
|
|
|
Fully relativistic energies, transition properties, and lifetimes of lithium-like germanium |
Shuang Li(李双)1,2,3, Jing Zhou(周璟)1, Liu-Hong Zhu(朱柳红)1, Xiu-Fei Mei(梅秀菲)1, and Jun Yan(颜君)2,† |
1 School of Electrical and Optoelectronic Engineering, West Anhui University, Lu'an 237012, China; 2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 3 Shanghai EBIT Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China |
|
|
Abstract Employing two fully relativistic methods, the multi-reference configuration Dirac-Hartree-Fock (MCDHF) method and the relativistic many-body perturbation theory (RMBPT) method, we report energies and lifetime values for the lowest 35 energy levels of the (1s$^2)nl$ configurations (where the principal quantum number $n = 2$-6 and the angular quantum number $l = 0$, …, $n-1$) of lithium-like germanium (Ge XXX), as well as complete data on the transition wavelengths, radiative rates, absorption oscillator strengths, and line strengths between the levels. Both the allowed (E1) and forbidden (magnetic dipole M1, magnetic quadrupole M2, and electric quadrupole E2) ones are reported. The results from the two methods are consistent with each other and align well with previous accurate experimental and theoretical findings. We assess the overall accuracies of present RMBPT results to be likely the most precise ones to date. The present fully relativistic results should be helpful for soft x-ray laser research, spectral line identification, plasma modeling and diagnosing. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135.
|
Received: 08 August 2024
Revised: 12 September 2024
Accepted manuscript online: 18 September 2024
|
PACS:
|
31.15.vj
|
(Electron correlation calculations for atoms and ions: excited states)
|
|
31.15.am
|
(Relativistic configuration interaction (CI) and many-body perturbation calculations)
|
|
31.15.xp
|
(Perturbation theory)
|
|
32.70.Cs
|
(Oscillator strengths, lifetimes, transition moments)
|
|
Fund: Project supported by the Research Foundation for Higher Level Talents of West Anhui University (Grant No. WGKQ2021005). |
Corresponding Authors:
Jun Yan
E-mail: yan_jun@iapcm.ac.cn
|
Cite this article:
Shuang Li(李双), Jing Zhou(周璟), Liu-Hong Zhu(朱柳红), Xiu-Fei Mei(梅秀菲), and Jun Yan(颜君) Fully relativistic energies, transition properties, and lifetimes of lithium-like germanium 2024 Chin. Phys. B 33 103102
|
[1] Ullmann J, Andelkovic Z and Brandau C, et al. 2017 Nat. Commun. 8 15484 [2] Karr J P 2017 Nat. Phys. 13 533 [3] Zhang G S, Deng B L, Yang J, Tang K, Meng B and Zhang X Q 2023 At. Data Nucl. Data Tables 149 101547 [4] Skripnikov L V, Schmidt S, Ullmann J, Geppert C, Kraus F, Kresse B, Nortershauser W, Privalov A F, Scheibe B, Shabaev V M, Vogel M and Volotka A V 2018 Phys. Rev. Lett. 120 093001 [5] Volotka A V, Glazov D A, Shabaev V M, Tupitsyn I I and Plunien G 2014 Phys. Rev. Lett. 112 253004 [6] Yerokhin V A and Surzhykov A 2018 J. Phys. Chem. Ref. Data 47 023105 [7] Li S, Zhao M, Liu G Q, Hu C B and Pan G Z 2023 Chin. Phys. B 32 103101 [8] Liu X and Zhang J C 2023 J. Korean Phys. Soc. 82 154 [9] Kumar P, Goyal A and Mohan M 2022 Eur. Phys. J. Plus 137 1253 [10] Fontes C J and Zhang H L 2017 At. Data Nucl. Data Tables 113 293 [11] Barzakh A, Andreyev A N, Raison C, et al. 2021 Phys. Rev. Lett. 127 192501 [12] Deng B L, Jiang G and Zhang C Y 2014 At. Data Nucl. Data Tables 100 1337 [13] Aggarwal K M and Keenan F P 2013 At. Data Nucl. Data Tables 99 156 [14] Aggarwal K M and Keenan F P 2012 At. Data Nucl. Data Tables 98 1003 [15] Liang G Y and Badnell N R 2011 Astron. Astrophys. 528 A69 [16] Namba S, Wang J H, Ohiro H, Zhang J W, Kishimoto M, Yamasaki K, Hasegawa N, Dinh T, Ishino M, Higashiguchi T and Nishikino M 2022 Atoms 10 128 [17] Mitra-Kraev U and Del Zanna G 2019 Astron. Astrophys. 628 A134 [18] Neupert W M, Swartz M and Kastner S O 1973 Sol. Phys. 31 171 [19] Boiko V, Faenov A and Pikuz S 1978 J. Quantum Spectrosc. Radiat. Transfer 19 11 [20] Behring W E, Seely J F, Brown C M, Feldman U and Knauer J P 1989 J. Opt. Soc. Am. B: Opt. Phys. 6 531 [21] Hinnov E, the TFTR Operating Team, Denne B and the JET Operating Team 1989 Phys. Rev. A 40 4357 [22] Zhang W M, Zhang L, Cheng Y X, Morita S, Wang Z X, Hu A L, Zhang F L, Duan Y M, Zhou T F, Wang S X and Liu H Q 2022 Phys. Scr. 97 045604 [23] Epp S W, López-Urrutia J R C, Brenner G, Mäckel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhöfer M, Martins M, Wurth W and Ullrich J 2007 Phys. Rev. Lett. 98 183001 [24] Chen H, Gu M F, Behar E, Brown G V, Kahn S M and Beiersdorfer P 2007 Astrophys. J. Suppl. Ser. 168 319 [25] Yan Z C, Tambasco M and Drake G W F 1998 Phys. Rev. A 57 1652 [26] Li W X, Amarsi A M, Papoulia A, Ekman J and Jönsson P 2021 Mon. Not. R. Astron. Soc. 502 3780 [27] Zhang D H, Zhang F J, Ding X B and Dong C Z 2021 Chin. Phys. B 30 043102 [28] Zeng J L, Li Y J and Yuan J M 2021 J. Quantum Spectrosc. Radiat. Transfer 272 107777 [29] Liu X, Zhang J C and Wang Z W 2019 Results Phys. 12 398 [30] Santana J A, Peña-Cotto E L, Butler E J M, Beiersdorfer P and Brown V G 2019 Astrophys. J. Suppl. Ser. 245 9 [31] Santana J A, Lopez-Dauphin N A and Beiersdorfer P 2018 Astrophys. J. Suppl. Ser. 234 13 [32] Santana J A, Lopez-Dauphin N A, Butler E J M and Beiersdorfer P 2018 Astrophys. J. Suppl. Ser. 238 34 [33] Chen Z B, Wang K and Guo X L 2018 J. Quantum Spectrosc. Radiat. Transfer 220 28 [34] El-Maaref A A 2016 J. Quantum Spectrosc. Radiat. Transfer 170 45 [35] Hao L H, Liu J J and Kang X P 2016 Eur. Phys. J. Plus 131 204 [36] Cai J, Yu W W and Zhang N 2014 Chin. Phys. Lett. 31 093101 [37] Gu M F 2005 At. Data Nucl. Data Tables 89 267 [38] Nahar S N and Pradhan A 1999 Astron. Astrophys. Suppl. Ser. 135 347 [39] Fischer C F, Saparov M, Gaigalas G and Godefroid M 1998 At. Data Nucl. Data Tables 70 119 [40] Kozhedub Y S, Volotka A V, Artemyev A N, Glazov D A, Plunien G, Shabaev V M, Tupitsyn I I and Stöhlker T 2010 Phys. Rev. A 81 042513 [41] Vainshtein L A and Safronova U I 1985 Phys. Scr. 31 519 [42] Zhang H L, Sampson D H and Fontes C J 1990 At. Data Nucl. Data Tables 44 31 [43] Johnson W R, Liu Z W and Sapirstein J 1996 At. Data Nucl. Data Tables 64 279 [44] Khatri I, Goyal A, Aggarwal S, Singh A K and Mohan M 2016 Radiat. Phys. Chem. 123 46 [45] Kramida A, Ralchenko Y, Reader J and NIST ASD Team Online 2023 NIST Atomic Spectra Database (version 5.11). Accessed 19 July 2024 [46] Badnell N R 1986 J. Phys. B: At. Mol. Phys. 19 3827 [47] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184 [48] Gu M F 2008 Can. J. Phys. 86 675 [49] Wang K, Si R, Dang W, Jönsson P, Guo X L, Li S, Chen Z B, Zhang H, Long F Y, Liu H T, Li D F, Hutton R, Chen C Y and Yan J 2016 Astrophys. J. Suppl. Ser. 223 3 [50] Wang K, Jönsson P, Ekman J, Gaigalas G, Godefroid M R, Si R, Chen Z B, Li S, Chen C Y and Yan J 2017 Astrophys. J. Suppl. Ser. 229 37 [51] Si R, Li S, Guo X L, Chen Z B, Brage T, Jönsson P, Wang K, Yan J, Chen C Y and Zou Y M 2016 Astrophys. J. Suppl. Ser. 227 16 [52] Wang K, Chen Z B, Si R, Jönsson P, Ekman J, Guo X L, Li S, Long F Y, Dang W, Zhao X H, Hutton R, Chen C Y, Yan J and Yang X 2016 Astrophys. J. Suppl. Ser. 226 14 [53] Fischer C F, Godefroid M, Brage T, Jönsson P and Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004 [54] Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W X, Li J G, Brage T, Grant I P, Bieroń J and Fischer C F 2022 Atoms 11 7 [55] Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W X, Li J G, Brage T, Grant I P, Bieroń J and Fischer C F 2023 Atoms 11 68 [56] Gu M F, Holczer T, Behar E and Kahn S 2006 Astrophys. J. 641 1227 [57] Gu M F 2007 Astrophys. J. Suppl. Ser. 169 154 [58] Lindgren I J 1974 J. Phys. B: At. Mol. Opt. Phys. 7 2441 [59] Safronova U I, Safronova A S and Beiersdorfer P 2006 J. Phys. B: At. Mol. Opt. Phys. 39 4491 [60] Aggarwal K M, Keenan F P and Lawson K D 2008 At. Data Nucl. Data Tables 94 323 [61] Fischer C F 2009 Phys. Scr. T134 014019 [62] Ekman J, Godefroid M R and Hartman H 2014 Atoms 2 215 [63] Wu C Q, Zhao R X, Zhang D H, Zhang M W, Xue Y L, Yu D Y, Dong C Z and Ding X B 2023 Eur. Phys. J. D 77 129 [64] Behring W E, Seely J F, Brown C M, Feldman U and Knauer J P 1989 J. Opt. Soc. Am. B: Opt. Phys. 6 531 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|