Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
TOPICAL REVIEW — Optical field manipulation |
Prev
Next
|
|
|
Light-field modulation and optimization near metal nanostructures utilizing spatial light modulators |
Zini Cao(曹子倪)1, Hai Lin(林海)1, Yuqing Cheng(程宇清)2, Yixuan Xu(徐艺轩)1, Qihuang Gong(龚旗煌)1,3,4, and Guowei Lü(吕国伟)1,3,4,† |
1 State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China; 2 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 4 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China |
|
|
Abstract Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications. However, a significant challenge arises from the fixed shapes of nanostructures post-fabrication, resulting in limited modes under ordinary illumination. A promising solution lies in far-field control facilitated by spatial light modulators (SLMs), which enable on-site, real-time, and non-destructive manipulation of plasmon excitation. Through the robust modulation of the incident light using SLMs, this approach enables the generation, optimization, and dynamic control of surface plasmon polariton (SPP) and localized surface plasmon (LSP) modes. The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy, offering novel approaches for signal optimization and functional expansion in this field. This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.
|
Received: 20 April 2024
Revised: 12 July 2024
Accepted manuscript online: 19 July 2024
|
PACS:
|
42.40.Eq
|
(Holographic optical elements; holographic gratings)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
95.75.Qr
|
(Adaptive and segmented optics)
|
|
Fund: Project supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030009), the National Key Research and Development Program of China (Grant No. 2022YFA1604304), and the National Natural Science Foundation of China (Grant No. 92250305). |
Corresponding Authors:
Guowei Lü
E-mail: guowei.lu@pku.edu.cn
|
Cite this article:
Zini Cao(曹子倪), Hai Lin(林海), Yuqing Cheng(程宇清), Yixuan Xu(徐艺轩), Qihuang Gong(龚旗煌), and Guowei Lü(吕国伟) Light-field modulation and optimization near metal nanostructures utilizing spatial light modulators 2024 Chin. Phys. B 33 104201
|
[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824 [2] Ozbay E 2006 Science 311 189 [3] Maier S A 2007 Plasmonics: fundamentals and applications (New York: Springer) [4] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater. 9 193 [5] Yu H, Peng Y, Yang Y and Li Z Y 2019 Npj Comput. Mater. 5 45 [6] Moskovits M 1985 Rev. Mod. Phys. 57 783 [7] Wu H, Gao Y, Xu P, Guo X, Wang P, Dai D and Tong L 2019 Adv. Opt. Mater. 7 1900334 [8] Zhan C, Chen X J, Yi J, Li J F, Wu D Y and Tian Z Q 2018 Nat. Rev. Chem. 2 216 [9] Jain P K, Huang X, El-Sayed I H and El-Sayed M A 2007 Plasmonics 2 107 [10] Homola J 2008 Chem. Rev. 108 462 [11] Zhou X, Yang Y, Wang S and Liu X 2020 Angew. Chem. Int. Ed. 59 1776 [12] Zhang X and Yang J 2019 Front. Phys. 7 190 [13] Wang X, Huang S C, Hu S, Yan S and Ren B 2020 Nat. Rev. Phys. 2 253 [14] Li J F, Li C Y and Aroca R F 2017 Chem. Soc. Rev. 46 3962 [15] Fleischmann M, Hendra P J and McQuillan A J 1974 Chem. Phys. Lett. 26 163 [16] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667 [17] Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K and Moerner W E 2009 Nat. Photonics 3 654 [18] Wei F, Lu D, Shen H, Wan W, Ponsetto J L, Huang E and Liu Z 2014 Nano Lett. 14 4634 [19] Chen H, Du L, Wu X, Zhu S, Yang Y, Fang H and Yuan X 2016 Appl. Phys. Lett. 109 261904 [20] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668 [21] Rycenga M, Cobley C M, Zeng J, Li W, Moran C H, Zhang Q, Qin D and Xia Y 2011 Chem. Rev. 111 3669 [22] Yu N and Capasso F 2014 Nat. Mater. 13 139 [23] Singh A, Hugall J T, Calbris G and Van Hulst N F 2020 ACS Photonics 7 2381 [24] Lin J, Mueller J P B, Wang Q, Yuan G, Antoniou N, Yuan X C and Capasso F 2013 Science 340 331 [25] Awada C, Popescu T, Douillard L, Charra F, Perron A, Yockell-Leli`evre H, Baudrion A L, Adam P M and Bachelot R 2012 J. Phys. Chem. C 116 14591 [26] Wan W, Gao J and Yang X 2016 ACS Nano 10 10671 [27] Volpe G, Cherukulappurath S, Juanola Parramon R, Molina-Terriza G and Quidant R 2009 Nano Lett. 9 3608 [28] Neff J A, Athale R A and Lee S H 1990 Proc. IEEE 78 826 [29] Savage N 2009 Nat. Photonics 3 170 [30] Zhang Z, You Z and Chu D 2014 Light Sci. Appl. 3 e213 [31] Chen P, Wei B, Hu W and Lu Y 2019 Adv. Mater. 32 1903665 [32] Ren Y X, Lu R D and Gong L 2015 Ann. Phys. 527 447 [33] Forbes A, Dudley A and McLaren M 2016 Adv. Opt. Photonics 8 200 [34] Sato S 1979 Jpn. J. Appl. Phys. 18 1679 [35] Ohtake Y, Ando T, Fukuchi N, Matsumoto N, Ito H and Hara T 2007 Opt. Lett. 32 1411 [36] Matsumoto N, Ando T, Inoue T, Ohtake Y, Fukuchi N and Hara T 2008 J. Opt. Soc. Am. A 25 1642 [37] Ren Y X, Li M, Huang K, Wu J G, Gao H F, Wang Z Q and Li Y M 2010 Appl. Opt. 49 1838 [38] Lerner V, Shwa D, Drori Y and Katz N 2012 Opt. Lett. 37 4826 [39] Mirhosseini M, Magaña-Loaiza O S, Chen C, Rodenburg B, Malik M and Boyd R W 2013 Opt. Express 21 30196 [40] Čižmár T, Kollárová V, Tsampoula X, Gunn-Moore F, Sibbett W, Bouchal Z and Dholakia K 2008 Opt. Express 16 14024 [41] Ring J D, Lindberg J, Mourka A, Mazilu M, Dholakia K and Dennis M R 2012 Opt. Express 20 18955 [42] Gong L, Ren Y X, Xue G S, Wang Q C, Zhou J H, Zhong M C, Wang Z Q and Li Y M 2013 Appl. Opt. 52 4566 [43] Wang X L, Ding J, Ni W J, Guo C S and Wang H T 2007 Opt. Lett. 32 3549 [44] Gong L, Ren Y, Liu W, Wang M, Zhong M, Wang Z and Li Y 2014 J. Appl. Phys. 116 183105 [45] Rosales-Guzmán C, Bhebhe N and Forbes A 2017 Opt. Express 25 25697 [46] Okamoto T, Kamiyama T and Yamaguchi I 1993 Opt. Lett. 18 1570 [47] Dienerowitz M, Gibson G, Dienerowitz F and Padgett M 2012 J. Opt. 14 045003 [48] Brzobohatý O, Šiler M, Trojek J, Chvátal L, Karásek V, Paták A, Pokorná Z, Mika F and Zemánek P 2015 Sci. Rep. 5 8106 [49] Andres-Arroyo A, Wang F, Toe W J and Reece P 2015 Biomed. Opt. Express 6 3646 [50] Zayats A V, Smolyaninov I I and Maradudin A A 2005 Phys. Rep. 408 131 [51] Fang Y and Sun M 2015 Light Sci. Appl. 4 e294 [52] Willets K A and Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267 [53] Zhao C and Zhang J 2011 Appl. Phys. Lett. 98 211108 [54] Yuan G H, Wang Q, Tan P S, Lin J and Yuan X C 2012 Nanotechnology 23 385204 [55] Gjonaj B, Aulbach J, Johnson P M, Mosk A P, Kuipers L and Lagendijk A 2011 Nat. Photonics 5 360 [56] Wei S, Si G, Malek M, Earl S K, Du L, Kou S S, Yuan X and Lin J 2018 Sci. Adv. 4 eaao0533 [57] Choi W, Jo Y, Ahn J, Ahn J M, Seo E, Park Q H, Jhon Y M and Choi W 2017 Nat. Commun. 8 14636 [58] Yuan G H, Yuan X C, Bu J, Tan P S and Wang Q 2011 Opt. Express 19 224 [59] Gjonaj B, Aulbach J, Johnson P M, Mosk A P, Kuipers L and Lagendijk A 2012 Nano Lett. 12 546 [60] Gjonaj B, Aulbach J, Johnson P M, Mosk A P, Kuipers L and Lagendijk A 2013 Phys. Rev. Lett. 110 266804 [61] Seo E, Ahn J, Choi W, Lee H, Jhon Y M, Lee S and Choi W 2014 Opt. Lett. 39 5838 [62] Dikken D J W, Korterik J P, Segerink F B, Herek J L and Prangsma J C 2016 Sci. Rep. 6 25037 [63] Jo Y, Choi W, Seo E, Ahn J, Park Q H, Jhon Y M and Choi W 2017 Sci. Rep. 7 9779 [64] Seo E, Jin Y H, Choi W, Jo Y, Lee S, Song K D, Ahn J, Park Q H, Kim M K and Choi W 2020 Nat. Commun. 11 2575 [65] Padgett M J 2017 Opt. Express 25 11265 [66] Genevet P, Lin J, Kats M A and Capasso F 2012 Nat. Commun. 3 1278 [67] Chen J, Chen X, Li T and Zhu S 2018 Laser Photonics Rev. 12 1700331 [68] Cho S W, Park J, Lee S Y, Kim H and Lee B 2012 Opt. Express 20 10083 [69] Feng F, Si G, Min C, Yuan X and Somekh M 2020 Light Sci. Appl. 9 95 [70] Durnin J, Miceli J J and Eberly J H 1987 Phys. Rev. Lett. 58 1499 [71] Berry M V and Balazs N L 1979 Am. J. Phys. 47 264 [72] Siviloglou G A and Christodoulides D N 2007 Opt. Lett. 32 979 [73] Wang S, Zhang J, Fu M, He J and Li X 2021 Nanomaterials 11 2941 [74] Zhang P, Wang S, Liu Y, Yin X, Lu C, Chen Z and Zhang X 2011 Opt. Lett. 36 3191 [75] Lin J, Dellinger J, Genevet P, Cluzel B, De Fornel F and Capasso F 2012 Phys. Rev. Lett. 109 093904 [76] Regan C J, Grave De Peralta L and Bernussi A A 2012 J. Appl. Phys. 112 103107 [77] Salandrino A and Christodoulides D N 2010 Opt. Lett. 35 2082 [78] Minovich A, Klein A E, Janunts N, Pertsch T, Neshev D N and Kivshar Y S 2011 Phys. Rev. Lett. 107 116802 [79] Li L, Li T, Wang S M, Zhang C and Zhu S N 2011 Phys. Rev. Lett. 107 126804 [80] Zuloaga J, Prodan E and Nordlander P 2009 Nano Lett. 9 887 [81] Stockman M 1997 Phys. Rev. E 56 6494 [82] Rabitz H, De Vivie-Riedle R, Motzkus M and Kompa K 2000 Science 288 824 [83] Stockman M I 2013 Nanoplasmonics: From Present into Future Plasmonics: Theory and Applications Challenges and Advances in Computational Chemistry and Physics vol. 15, edn. Shahbazyan T V and Stockman M I (Dordrecht: Springer Netherlands) pp. 1-101 [84] Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M and Gerber G 1998 Science 282 919 [85] Bartels R, Backus S, Zeek E, Misoguti L, Vdovin G, Christov I P, Murnane M M and Kapteyn H C 2000 Nature 406 164 [86] Dudovich N, Oron D and Silberberg Y 2002 Nature 418 512 [87] Stockman M, Faleev S and Bergman D 2002 Phys. Rev. Lett. 88 067402 [88] Aeschlimann M, Bauer M, Bayer D, Brixner T, García de Abajo F J, Pfeiffer W, Rohmer M, Spindler C and Steeb F 2007 Nature 446 301 [89] Aeschlimann M, Brixner T, Cunovic S, Fischer A, Melchior P, Pfeiffer W, Rohmer M, Schneider C, Strüber C, Tuchscherer P and Voronine D V 2012 IEEE J. Sel. Top. Quantum Electron. 18 275 [90] Aeschlimann M, Bauer M, Bayer D, Brixner T, Cunovic S, Fischer A, Melchior P, Pfeiffer W, Rohmer M, Schneider C, Strüber C, Tuch- scherer P and Voronine D V 2012 New J. Phys. 14 033030 [91] Brinks D, Castro-Lopez M, Hildner R and van Hulst N F 2013 Proc. Natl. Acad. Sci. USA 110 18386 [92] Aeschlimann M, Bauer M, Bayer D, Brixner T, Cunovic S, Dimler F, Fischer A, Pfeiffer W, Rohmer M, Schneider C, Steeb F, Strüber C and Voronine D V 2010 Proc. Natl. Acad. Sci. USA 107 5329 [93] Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913 [94] Bondareff P, Volpe G, Gigan S and Gresillon S 2015 ACS Photonics 2 1658 [95] Kao T S, Jenkins S D, Ruostekoski J and Zheludev N I 2011 Phys. Rev. Lett. 106 085501 [96] Kao T S, Rogers E T F, Ou J Y and Zheludev N I 2012 Nano Lett. 12 2728 [97] Sentenac A and Chaumet P C 2008 Phys. Rev. Lett. 101 013901 [98] Glass A M, Liao P F, Bergman J G and Olson D H 1980 Opt. Lett. 5 368 [99] Chen C K, De Castro A R B and Shen Y R 1981 Phys. Rev. Lett. 46 145 [100] Stiles P L, Dieringer J A, Shah N C and Van Duyne R P 2008 Annu. Rev. Anal. Chem. 1 601 [101] Yang A, Du L, Dou X, Meng F, Zhang C, Min C, Lin J and Yuan X 2018 Plasmonics 13 991 [102] Giuzio G, Martín Sabanés N and Domke K F 2020 Appl. Spectrosc. 74 1407 [103] Shutova M, Sinyukov A M, Birmingham B, Zhang Z and Sokolov A V 2020 Opt. Lett. 45 3709 [104] Ertsgaard C T, McKoskey R M, Rich I S and Lindquist N C 2014 ACS Nano 8 10941 [105] Olson A P, Spies K B, Browning A C, Soneral P A G and Lindquist N C 2017 Sci. Rep. 7 9135 [106] Olson A P, Ertsgaard C T, Elliott S N and Lindquist N C 2016 ACS Photonics 3 329 [107] Tomita K, Kojima Y and Kannari F 2018 Nano Lett. 18 1366 [108] Collard L, Pisano F, Zheng D, Balena A, Kashif M F, Pisanello M, D’Orazio A, De La Prida L M, Cirací C, Grande M, De Vittorio M and Pisanello F 2022 Small 18 2200975 [109] Fort E and Grésillon S 2008 J. Phys. Appl. Phys. 41 013001 [110] Lee D Y, Park C, Choi J, Koo Y, Kang M, Jeong M S, Raschke M B and Park K D 2021 Nat. Commun. 12 3465 [111] Koo Y, Lee H, Ivanova T, Savelev R S, Petrov M I, Kravtsov V and Park K D 2023 ACS Nano 17 4854 [112] Koo Y, Kim Y, Choi S H, Lee H, Choi J, Lee D Y, Kang M, Lee H S, Kim K K, Lee G and Park K 2021 Adv. Mater. 33 2008234 [113] Kauranen M and Zayats A V 2012 Nat. Photonics 6 737 [114] Toma K, Masaki Y, Kusaba M, Hirosawa K and Kannari F 2015 J. Appl. Phys. 118 103102 [115] Kravtsov V, AlMutairi S, Ulbricht R, Kutayiah A R, Belyanin A and Raschke M B 2018 Phys. Rev. Lett. 120 203903 [116] Jiang T, Kravtsov V, Tokman M, Belyanin A and Raschke M B 2019 Nat. Nanotechnol. 14 838 [117] Huft P R, Kolbow J D, Thweatt J T and Lindquist N C 2017 Nano Lett. 17 7920 [118] Zhang B, Pechprasarn S and Somekh M G 2012 Opt. Express 20 28039 [119] Pechprasarn S, Zhang B, Albutt D, Zhang J and Somekh M 2014 Light Sci. Appl. 3 e187 [120] Ohannesian N, Li J, Misbah I, Zhao F and Shih W C 2020 ACS Omega 5 32481 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|